3 research outputs found

    Prognostics of Ball Bearings in Cooling Fans

    Get PDF
    Ball bearings have been used to support rotating shafts in machines such as wind turbines, aircraft engines, and desktop computer fans. There has been extensive research in the areas of condition monitoring, diagnostics, and prognostics of ball bearings. As the identification of ball bearing defects by inspection interrupts the operation of rotating machines and can be costly, the assessment of the health of ball bearings relies on the use of condition monitoring techniques. Fault detection and life prediction methods have been developed to improve condition-based maintenance and product qualification. However, intermittent and catastrophic system failures due to bearing problems still occur resulting in loss of life and increase of maintenance and warranty costs. Inaccurate life prediction of ball bearings is of concern to industry. This research focuses on prognostics of ball bearings based on vibration and acoustic emission analysis to provide early warning of failure and predict life in advance. The failure mechanisms of ball bearings in cooling fans are identified and failure precursors associated with the defects are determined. A prognostic method based on Bayesian Monte Carlo method and sequential probability ratio test is developed to predict time-to-failure of ball bearings in advance. A benchmark study is presented to demonstrate the application of the developed prognostic method to desktop computer fans. The prognostic method developed in this research can be extended as a general method to predict life of a component or system

    Diagnosis of low-speed bearing degradation using acoustic emission techniques

    Get PDF
    It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines (<100 rpm), This PhD addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this research program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in either race. It was found that the change in AE amplitude and AE RMS could identify the presence of a small fault seeded into either the inner or the outer races. However, the severe attenuation of the signal from the inner race meant that, while AE amplitude and RMS could readily identify the incipient fault, kurtosis and the AE counts could not. Thus, more attention needs to be given to analysing the signal from the inner race. The third objective was to identify a measure that would assess the degree of severity of the fault. However, once the defect was established, it was found that of the parameters used only AE RMS was sensitive to defect size. The fourth objective was to assess whether the AE signal is able to detect defects located at either the centre or edge of the outer race of a bearing rotating at low speeds. It is found that all the measured AE parameters had higher values when the defect was seeded in the middle of the outer race, possibly due to the shorter path traversed by the signal between source and sensor which gave a lower attenuation than when the defect was on the edge of the outer race. Moreover, AE can detect the defect at both locations, which confirmed the applicability of the AE to monitor the defects at any location on the outer race

    Failure Prediction of Digitally Controlled Switching Mode Power Supply

    Get PDF
    長崎大学学位論文 学位記番号:博(工)甲第59号 学位授与年月日:平成30年9月20日Nagasaki University (長崎大学)課程博
    corecore