6 research outputs found

    A Hardware Architecture for Reconfigurable Intelligent Surfaces with Minimal Active Elements for Explicit Channel Estimation

    Full text link
    Intelligent surfaces comprising of cost effective, nearly passive, and reconfigurable unit elements are lately gaining increasing interest due to their potential in enabling fully programmable wireless environments. They are envisioned to offer environmental intelligence for diverse communication objectives, when coated on various objects of the deployment area of interest. To achieve this overarching goal, the channels where the Reconfigurable Intelligent Surfaces (RISs) are involved need to be in principle estimated. However, this is a challenging task with the currently available hardware RIS architectures requiring lengthy training periods among the network nodes utilizing RIS-assisted wireless communication. In this paper, we present a novel RIS architecture comprising of any number of passive reflecting elements, a simple controller for their adjustable configuration, and a single Radio Frequency (RF) chain for baseband measurements. Capitalizing on this architecture and assuming sparse wireless channels in the beamspace domain, we present an alternating optimization approach for explicit estimation of the channel gains at the RIS elements attached to the single RF chain. Representative simulation results demonstrate the channel estimation accuracy and achievable end-to-end performance for various training lengths and numbers of reflecting unit elements.Comment: 5 pages, 2 figures, invited/accepted to IEEE ICASSP 202

    Large load-controlled multiple-active multiple-passive antenna arrays: Transmit beamforming and multi-user precoding

    Full text link

    Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

    Full text link
    The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300%300\% higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.Comment: Accepted by IEEE TWC; additional materials on the topic are included in the 2018 conference publications at ICASSP (https://ieeexplore.ieee.org/abstract/document/8461496) and GLOBECOM 2018 (arXiv:1809.05397

    Exploiting Constructive Mutual Coupling in P2P MIMO by Analog-Digital Phase Alignment

    Get PDF
    In this paper, we propose a joint analog-digital (A/D) beamforming scheme for the point-to-point multiple-input-multiple-output system, where we exploit mutual coupling by optimizing the load impedances of the transmit antennas. Contrary to the common conception that mutual coupling strictly harms the system performance, we show that mutual coupling can be beneficial by exploiting the concept of constructive interference. By changing the value of each load impedance for the antenna array based on convex optimization, the mutual coupling effect can be manipulated so that the resulting interference aligns constructively to the useful signal vector. We first prove that the full elimination of mutual coupling effect is not achievable solely by tuning the values of the antenna load impedances. We then introduce the proposed A/D scheme for both PSK and QAM modulations, where performance gains with respect to conventional techniques are obtained. The implementation of the proposed schemes is also discussed, where a lookup table can be built to efficiently apply the calculated load impedances. The numerical results show that the proposed schemes can achieve an improved performance compared to systems with fixed mutual coupling, especially when the antenna spacing is small

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF
    corecore