22,521 research outputs found

    One-Bit Precoding and Constellation Range Design for Massive MIMO with QAM Signaling

    Full text link
    The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and one-bit symbol-level precoding design problem for minimizing the average symbol error rate (SER) in downlink massive MIMO transmission. A tight upper-bound for SER with low-resolution DAC precoding is first derived. The derived expression suggests that the performance degradation of one-bit precoding can be interpreted as a decrease in the effective minimum distance of the QAM constellation. Using the obtained SER expression, we propose a QAM constellation range design for the single-user case. It is shown that in the massive MIMO limit, a reasonable choice for constellation range with one-bit precoding is that of the infinite-resolution precoding with per-symbol power constraint, but reduced by a factor of 2/π\sqrt{2/\pi} or about 0.80.8. The corresponding minimum distance reduction translates to about 2dB gap between the performance of one-bit precoding and infinite-resolution precoding. This paper further proposes a low-complexity heuristic algorithm for one-bit precoder design. Finally, the proposed QAM constellation range and precoder design are generalized to the multi-user downlink. We propose to scale the constellation range for infinite-resolution zero-forcing (ZF) precoding with per-symbol power constraint by the same factor of 2/π\sqrt{2/\pi} for one-bit precoding. The proposed one-bit precoding scheme is shown to be within 2dB of infinite-resolution ZF. In term of number of antennas, one-bit precoding requires about 50% more antennas to achieve the same performance as infinite-resolution precoding.Comment: 14 pages, 9 figures, to be published in IEEE Journal on Selected Topics on Signal Processin

    Low-Complexity Design of Generalized Block Diagonalization Precoding Algorithms for Multiuser MIMO Systems

    Full text link
    Block diagonalization (BD) based precoding techniques are well-known linear transmit strategies for multiuser MIMO (MU-MIMO) systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel single user MIMO (SU-MIMO) channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this work, low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. We devise a strategy based on a common channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Analytical and simulation results show that the proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity.Comment: 7 figures, 10 pages. IEEE Transactions on Communications, 2013. arXiv admin note: text overlap with arXiv:1304.647

    Interference Exploitation-based Hybrid Precoding with Robustness Against Phase Errors

    Get PDF
    Hybrid analog-digital precoding significantly reduces the hardware costs in massive MIMO transceivers when compared to fully-digital precoding at the expense of increased transmit power. In order to mitigate the above shortfall, we use the concept of constructive interference-based precoding, which has been shown to offer significant transmit power savings when compared with the conventional interference suppression-based precoding in fully-digital multiuser MIMO systems. Moreover, in order to circumvent the potential quality-of-service degradation at the users due to the hardware impairments in the transmitters, we judiciously incorporate robustness against such vulnerabilities in the precoder design. Since the undertaken constructive interference-based robust hybrid precoding problem is nonconvex with infinite constraints and thus difficult to solve optimally, we decompose the problem into two subtasks, namely, analog precoding and digital precoding. In this paper, we propose an algorithm to compute the optimal constructive interference-based robust digital precoders. Furthermore, we devise a scheme to facilitate the implementation of the proposed algorithm in a low-complexity and distributed manner. We also discuss block-level analog precoding techniques. Simulation results demonstrate the superiority of the proposed algorithm and its implementation scheme over the state-of-the-art methods

    Linear Precoding Designs for Amplify-and-Forward Multiuser Two-Way Relay Systems

    Full text link
    Two-way relaying can improve spectral efficiency in two-user cooperative communications. It also has great potential in multiuser systems. A major problem of designing a multiuser two-way relay system (MU-TWRS) is transceiver or precoding design to suppress co-channel interference. This paper aims to study linear precoding designs for a cellular MU-TWRS where a multi-antenna base station (BS) conducts bi-directional communications with multiple mobile stations (MSs) via a multi-antenna relay station (RS) with amplify-and-forward relay strategy. The design goal is to optimize uplink performance, including total mean-square error (Total-MSE) and sum rate, while maintaining individual signal-to-interference-plus-noise ratio (SINR) requirement for downlink signals. We show that the BS precoding design with the RS precoder fixed can be converted to a standard second order cone programming (SOCP) and the optimal solution is obtained efficiently. The RS precoding design with the BS precoder fixed, on the other hand, is non-convex and we present an iterative algorithm to find a local optimal solution. Then, the joint BS-RS precoding is obtained by solving the BS precoding and the RS precoding alternately. Comprehensive simulation is conducted to demonstrate the effectiveness of the proposed precoding designs.Comment: 13 pages, 12 figures, Accepted by IEEE TW
    corecore