67 research outputs found

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Beyond Non-Orthogonal Multiple Access: New Role of Constructive Interference

    Get PDF
    In this paper, we introduce a novel framework of constructive non-orthogonal multiple access (NOMA) transmission, which provides the merit of interference utilization and breaks through the constructive interference (CI)’s limitation on multiuser (MU) access capability. With dedicated synthetic successive coding and hybrid MU access designs, a novel constructive NOMA (CNOMA) precoder is proposed, which is particularly suitable for the scenario where users have heterogeneous throughput requirements. Explicitly, it makes the composite interference always beneficial to the users having high throughput requirement, while accommodating another sets of users under their subscribed reception-quality requirement. Finally, a number of fundamental properties of the CNOMA design is revealed, such as the tradeoff between utilization of MU interference and improvement of MU access capability. Simulation demonstrates that the proposed CNOMA precoder significantly outperforms the classic CI and minimum-mean-square-error precoders in throughput performance, and meanwhile obtains high access capability close to classic NOMA designs

    Joint Fractional Time Allocation and Beamforming for Downlink Multiuser MISO Systems

    Full text link
    It is well-known that the traditional transmit beamforming at a base station (BS) to manage interference in serving multiple users is effective only when the number of users is less than the number of transmit antennas at the BS. Non-orthogonal multiple access (NOMA) can improve the throughput of users with poorer channel conditions by compromising their own privacy because other users with better channel conditions can decode the information of users in poorer channel state. NOMA still prefers that the number of users is less than the number of antennas at the BS transmitter. This paper resolves such issues by allocating separate fractional time slots for serving the users with similar channel conditions. This enables the BS to serve more users within the time unit while the privacy of each user is preserved. The fractional times and beamforming vectors are jointly optimized to maximize the system's throughput. An efficient path-following algorithm, which invokes a simple convex quadratic program at each iteration, is proposed for the solution of this challenging optimization problem. Numerical results confirm its versatility.Comment: IEEE Communications Letters (To Appear

    Rate-Splitting Multiple Access: The First Prototype and Experimental Validation of its Superiority over SDMA and NOMA

    Full text link
    In multi-user multi-antenna communications, it is well-known in theory that Rate-Splitting Multiple Access (RSMA) can achieve a higher spectral efficiency than both Space Division Multiple Access (SDMA) and Non-Orthogonal Multiple Access (NOMA). However, an experimental evaluation of RSMA's performance, relative to SDMA and NOMA, is missing in the literature, which is essential to address the ongoing debate between RSMA and NOMA over which is better suited to handle most efficiently the available resources and interference in 6G. In this paper, we address this critical knowledge gap by realizing the first-ever RSMA prototype using software-defined radios. Through measurements using our prototype, we empirically solve the modulation and coding scheme limited sum throughput maximization problem for RSMA, SDMA and NOMA for the two-user multiple-input single-output (MISO) scenario over (a) different pairs of line-of-sight channels that vary in terms of their relative pathloss and spatial correlation, and with (b) different channel state information quality. We observe that RSMA achieves the highest sum throughput across all these cases, whereas SDMA and NOMA are effective only in some cases. Furthermore, RSMA also achieves better fairness at a higher sum throughput than both SDMA and NOMA.Comment: major revisions of IEEE Transactions on Wireless Communication

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore