1,090,060 research outputs found
Environment Assisted Precision Measurement
We describe a method to enhance the sensitivity of precision measurements
that takes advantage of a quantum sensor's environment to amplify its response
to weak external perturbations. An individual qubit is used to sense the
dynamics of surrounding ancillary qubits, which are in turn affected by the
external field to be measured. The resulting sensitivity enhancement is
determined by the number of ancillas that are coupled strongly to the sensor
qubit; it does not depend on the exact values of the coupling strengths and is
resilient to many forms of decoherence. The method achieves nearly
Heisenberg-limited precision measurement, using a novel class of entangled
states. We discuss specific applications to improve clock sensitivity using
trapped ions and magnetic sensing based on electronic spins in diamond.Comment: 4 pages, 3 figure
Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States
The presence of loss limits the precision of an approach to phase measurement
using maximally entangled states, also referred to as NOON states. A
calculation using a simple beam-splitter model of loss shows that, for all
nonzero values L of the loss, phase measurement precision degrades with
increasing number N of entangled photons for N sufficiently large. For L above
a critical value of approximately 0.785, phase measurement precision degrades
with increasing N for all values of N. For L near zero, phase measurement
precision improves with increasing N down to a limiting precision of
approximately 1.018 L radians, attained at N approximately equal to 2.218/L,
and degrades as N increases beyond this value. Phase measurement precision with
multiple measurements and a fixed total number of photons N_T is also examined.
For L above a critical value of approximately 0.586, the ratio of phase
measurement precision attainable with NOON states to that attainable by
conventional methods using unentangled coherent states degrades with increasing
N, the number of entangled photons employed in a single measurement, for all
values of N. For L near zero this ratio is optimized by using approximately
N=1.279/L entangled photons in each measurement, yielding a precision of
approximately 1.340 sqrt(L/N_T) radians.Comment: Additional references include
Quantum information and precision measurement
We describe some applications of quantum information theory to the analysis
of quantum limits on measurement sensitivity. A measurement of a weak force
acting on a quantum system is a determination of a classical parameter
appearing in the master equation that governs the evolution of the system;
limitations on measurement accuracy arise because it is not possible to
distinguish perfectly among the different possible values of this parameter.
Tools developed in the study of quantum information and computation can be
exploited to improve the precision of physics experiments; examples include
superdense coding, fast database search, and the quantum Fourier transform.Comment: 13 pages, 1 figure, proof of conjecture adde
Precision measurement of oscillation parameters with reactors
We review the potential of long and intermediate baseline reactor neutrino
experiments in measuring the mass and mixing parameters. The KamLAND experiment
can measure the solar mass squared difference very precisely. However it is not
at the ideal baseline for measuring the solar neutrino mixing angle. If low-LMA
is confirmed by the next results from KamLAND, a reactor experiment with a
baseline of 70 km should be ideal to measure precisely the solar neutrino
mixing angle. If on the contrary KamLAND re-establishes high-LMA as a viable
solution, then a 20--30 km intermediate baseline reactor experiment could yield
very rich phenomenology.Comment: Talk presented at the 5th International Workshop on Neutrino
Factories & Superbeams (NuFact'03), Columbia University, New York, June 5-11,
200
Optimal measurement precision of a nonlinear interferometer
We study the best attainable measurement precision when a double-well trap
with bosons inside acts as an interferometer to measure the energy difference
of the atoms on the two sides of the trap. We introduce time independent
perturbation theory as the main tool in both analytical arguments and numerical
computations. Nonlinearity from atom-atom interactions will not indirectly
allow the interferometer to beat the Heisenberg limit, but in many regimes of
the operation the Heisenberg limit scaling of measurement precision is
preserved in spite of added tunneling of the atoms and atom-atom interactions,
often even with the optimal prefactor.Comment: very close to published versio
Proposal for a Precision Measurement of |Vub|
A new method for a precision measurement of the CKM matrix element |Vub| is
discussed, which combines good theoretical control with high efficiency and a
powerful discrimination against charm background. The resulting combined
theoretical uncertainty on |Vub| is estimated to be 10%.Comment: 4 pages, 2 figures, RevTe
- …
