6 research outputs found

    Precise Phase Transition of Total Variation Minimization

    Full text link
    Characterizing the phase transitions of convex optimizations in recovering structured signals or data is of central importance in compressed sensing, machine learning and statistics. The phase transitions of many convex optimization signal recovery methods such as β„“1\ell_1 minimization and nuclear norm minimization are well understood through recent years' research. However, rigorously characterizing the phase transition of total variation (TV) minimization in recovering sparse-gradient signal is still open. In this paper, we fully characterize the phase transition curve of the TV minimization. Our proof builds on Donoho, Johnstone and Montanari's conjectured phase transition curve for the TV approximate message passing algorithm (AMP), together with the linkage between the minmax Mean Square Error of a denoising problem and the high-dimensional convex geometry for TV minimization.Comment: 6 page

    On the Error in Phase Transition Computations for Compressed Sensing

    Get PDF
    Evaluating the statistical dimension is a common tool to determine the asymptotic phase transition in compressed sensing problems with Gaussian ensemble. Unfortunately, the exact evaluation of the statistical dimension is very difficult and it has become standard to replace it with an upper-bound. To ensure that this technique is suitable, [1] has introduced an upper-bound on the gap between the statistical dimension and its approximation. In this work, we first show that the error bound in [1] in some low-dimensional models such as total variation and β„“1\ell_1 analysis minimization becomes poorly large. Next, we develop a new error bound which significantly improves the estimation gap compared to [1]. In particular, unlike the bound in [1] that is not applicable to settings with overcomplete dictionaries, our bound exhibits a decaying behavior in such cases

    Effective Condition Number Bounds for Convex Regularization

    Get PDF
    We derive bounds relating Renegar's condition number to quantities that govern the statistical performance of convex regularization in settings that include the β„“1\ell_1-analysis setting. Using results from conic integral geometry, we show that the bounds can be made to depend only on a random projection, or restriction, of the analysis operator to a lower dimensional space, and can still be effective if these operators are ill-conditioned. As an application, we get new bounds for the undersampling phase transition of composite convex regularizers. Key tools in the analysis are Slepian's inequality and the kinematic formula from integral geometry.Comment: 17 pages, 4 figures . arXiv admin note: text overlap with arXiv:1408.301

    β„“1\ell^1-Analysis Minimization and Generalized (Co-)Sparsity: When Does Recovery Succeed?

    Full text link
    This paper investigates the problem of signal estimation from undersampled noisy sub-Gaussian measurements under the assumption of a cosparse model. Based on generalized notions of sparsity, we derive novel recovery guarantees for the β„“1\ell^{1}-analysis basis pursuit, enabling highly accurate predictions of its sample complexity. The corresponding bounds on the number of required measurements do explicitly depend on the Gram matrix of the analysis operator and therefore particularly account for its mutual coherence structure. Our findings defy conventional wisdom which promotes the sparsity of analysis coefficients as the crucial quantity to study. In fact, this common paradigm breaks down completely in many situations of practical interest, for instance, when applying a redundant (multilevel) frame as analysis prior. By extensive numerical experiments, we demonstrate that, in contrast, our theoretical sampling-rate bounds reliably capture the recovery capability of various examples, such as redundant Haar wavelets systems, total variation, or random frames. The proofs of our main results build upon recent achievements in the convex geometry of data mining problems. More precisely, we establish a sophisticated upper bound on the conic Gaussian mean width that is associated with the underlying β„“1\ell^{1}-analysis polytope. Due to a novel localization argument, it turns out that the presented framework naturally extends to stable recovery, allowing us to incorporate compressible coefficient sequences as well
    corecore