1,206 research outputs found

    Transient Electric Field Shaping With the Linear Combination of Configuration Field Method for Enhanced Spatial Control of Microwave Plasmas

    Get PDF
    The demonstration of enhanced spatial control of nanosecond microwave plasmas generated by the time reversal plasma source is presented in this paper. This new microwave plasma source relies on the spatio-temporal control of the electric field inside an all-metal plasma reactor by modifying the waveform of a high power microwave signal. More specifically, it originally used the spatio-temporal focusing capabilities of the time reversal method to focus a high electric field in a small location. However, a parasitic microwave breakdown can still occur at sharp corners or wedges inside the cavity due to the local enhancement of the residual electric field during time reversal focusing. Thus, it is proposed to use the linear combination of configuration field method to improve field control inside the reactor. Its transient electric field shaping capabilities turn out to be a good candidate for the development of a low pressure microwave ``plasma brush''

    Efficient Algorithms for Light Transmission, Focusing and Scattering Matrix Retrieval in Highly Diffusive 3D Random Media

    Full text link
    Wavefront shaping provides an increasingly appealing avenue for imaging and other applications that require controlling electromagnetic waves passing through complex and disordered media. Indeed, these techniques allow researchers and engineers to exploit the properties of high-frequency waves, particularly optical ones, as they interact with these media to obtain nearly perfect transmission and a high degree of focusing. Here, we simulate the process of wave propagation in 3D random media using full-wave, integral equation-based computational electromagnetics schemes. We replicate many experimental observations relating to the existence of so-called open channels in non-absorbing random media and the distribution of their transmission coefficients. In addition, we develop new schemes for manipulating these waves, e.g. by focusing them onto one or multiple spots in the output plane. Furthermore, we leverage the computational methods to develop new schemes for characterizing random media, e.g. by computing their scattering and transmission matrices under a variety of conditions. Finally, we study the transmission properties of absorbing media and find a universal fluctuant pattern of their maximal transmission coefficients.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147580/1/hanguo_1.pd

    Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses

    Get PDF
    We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based Integrate-and-Fire neural network, driven by a Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or Generalized Linear Models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions.Comment: 42 pages, 1 figure, submitte

    Fourier Transforms

    Get PDF
    The 21st century ushered in a new era of technology that has been reshaping everyday life, simplifying outdated processes, and even giving rise to entirely new business sectors. Today, contemporary users of products and services expect more and more personalized products and services that can meet their unique needs. In that sense, it is necessary to further develop existing methods, adapt them to new applications, or even discover new methods. This book provides a thorough review of some methods that have an increasing impact on humanity today and that can solve different types of problems even in specific industries. Upgrading with Fourier Transformation gives a different meaning to these methods that support the development of new technologies and have a good projected acceleration in the future

    DEVELOPMENT OF A VERSATILE HIGH SPEED NANOMETER LEVEL SCANNING MULTI-PROBE MICROSCOPE

    Get PDF
    The motivation for development of a multi-probe scanning microscope, presented in this dissertation, is to provide a versatile measurement tool mainly targeted for biological studies, especially on the mechanical and structural properties of an intracellular system. This instrument provides a real-time, three-dimensional (3D) scanning capability. It is capable of operating on feedback from multiple probes, and has an interface for confocal photo-detection of fluorescence-based and single molecule imaging sensitivity. The instrument platform is called a Scanning Multi-Probe Microscope (SMPM) and enables 45 microm by 45 microm by 10 microm navigation of specimen with simultaneous optical and mechanical probing with each probe location being adjustable for collocation or for probing with known probe separations. The 3D positioning stage where the specimen locates was designed to have nanometer resolution and repeatability at 10 Hz scan speed with either open loop or closed loop operating modes. The fine motion of the stage is comprises three orthogonal flexures driven by piezoelectric actuators via a lever linkage. The flexures design is able to scan in larger range especially in z axis and serial connection of the stages helps to minimize the coupling between x, y and z axes. Closed-loop control was realized by the capacitance gauges attached to a rectangular block mounted to the underside of the fine stage upon which the specimen is mounted. The stage's performance was studied theoretically and verified by experimental test. In a step response test and using a simple proportional and integral (PI) controller, standard deviations of 1.9 nm 1.8 nm and 0.41 nm in the x, y and z axes were observed after settling times of 5 ms and 20 ms for the x and y axes. Scanning and imaging of biological specimen and artifact grating are presented to demonstrate the system operation. For faster, short range scanning, novel ultra-fast fiber scanning system was integrated into the xyz fine stage to achieve a super precision dual scanning system. The initial design enables nanometer positioning resolution and runs at 100 Hz scan speed. Both scanning systems are capable of characterization using dimensional metrology tools. Additionally, because the high-bandwidth, ultra-fast scanning system operates through a novel optical attenuating lever, it is physically separate from the longer range scanner and thereby does not introduce additional positioning noise. The dual scanner provides a fine scanning mechanism at relatively low speed and large imaging area using the xyz stage, and focus on a smaller area of interested in a high speed by the ultra-fast scanner easily. Such functionality is beneficial for researchers to study intracellular dynamic motion which requires high speed imaging. Finally, two high end displacement sensor systems, a knife edge sensor and fiber interferometer, were demonstrated as sensing solutions for potential feedback tools to boost the precision and resolution performance of the SMPM

    Roadmap on multimode light shaping

    Get PDF
    Our ability to generate new distributions of light has been remarkably enhanced in recent years. At the most fundamental level, these light patterns are obtained by ingeniously combining different electromagnetic modes. Interestingly, the modal superposition occurs in the spatial, temporal as well as spatio-temporal domain. This generalized concept of structured light is being applied across the entire spectrum of optics: generating classical and quantum states of light, harnessing linear and nonlinear light-matter interactions, and advancing applications in microscopy, spectroscopy, holography, communication, and synchronization. This Roadmap highlights the common roots of these different techniques and thus establishes links between research areas that complement each other seamlessly. We provide an overview of all these areas, their backgrounds, current research, and future developments. We highlight the power of multimodal light manipulation and want to inspire new eclectic approaches in this vibrant research community.acceptedVersionPeer reviewe

    Numerical Simulations

    Get PDF
    This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary ïŹeld. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation

    Next-generation neural mass and field modeling

    Get PDF
    The Wilson-Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. Here we consider a neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related syn-chronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter , in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson-Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson-Cowan style model we deploy it in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex
    • 

    corecore