3,887 research outputs found

    Adaptive User Perspective Rendering for Handheld Augmented Reality

    Full text link
    Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. To this end, approaches usually apply face-tracking algorithms on the front camera of the mobile device. However, this demands high computational resources and therefore commonly affects the performance of the application beyond the already high computational load of AR applications. In this paper, we present a method to reduce the computational demands for user perspective rendering by applying lightweight optical flow tracking and an estimation of the user's motion before head tracking is started. We demonstrate the suitability of our approach for computationally limited mobile devices and we compare it to device perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view user perspective rendering

    Spherical tangible user interfaces in mixed reality

    Get PDF
    The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in recent years, both in academia and commercial applications. This is rooted in technological advances and affordable head-mounted displays (HMDs). Whether in games or professional applications, HMDs allow for immersive audio-visual experiences that transport users to compelling digital worlds or convincingly augment the real world. However, as true to life as these experiences have become in a visual and auditory sense, the question remains how we can model interaction with these virtual environments in an equally natural way. Solutions providing intuitive tangible interaction would bear the potential to fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual to real-world objects. Tangible interaction has been shown to provide significant advantages for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case of these devices, mainly due to their ability to fully embody any spherical virtual content. In general, spherical devices increasingly transition from mere technology demonstrators to usable multi-modal interfaces. For this dissertation, we explore the application of STUIs in MR environments primarily by comparing them to state-of-the-art input techniques in four different contexts. Thus, investigating the questions of embodiment, overall user performance, and the ability of STUIs relying on their shape alone to support complex interaction techniques. First, we examine how spherical devices can embody immersive visualizations. In an initial study, we test the practicality of a tracked sphere embodying three kinds of visualizations. We examine simulated multi-touch interaction on a spherical surface and compare two different sphere sizes to VR controllers. Results confirmed our prototype's viability and indicate improved pattern recognition and advantages for the smaller sphere. Second, to further substantiate VR as a prototyping technology, we demonstrate how a large tangible spherical display can be simulated in VR. We show how VR can fundamentally extend the capabilities of real spherical displays by adding physical rotation to a simulated multi-touch surface. After a first study evaluating the general viability of simulating such a display in VR, our second study revealed the superiority of a rotating spherical display. Third, we present a concept for a spherical input device for tangible AR (TAR). We show how such a device can provide basic object manipulation capabilities utilizing two different modes and compare it to controller techniques with increasing hardware complexity. Our results show that our button-less sphere-based technique is only outperformed by a mode-less controller variant that uses physical buttons and a touchpad. Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing approaches: a continuous and a discrete technique. For the first, we demonstrate a spherical locomotion device supporting two different locomotion paradigms that propel a user's first-person avatar accordingly. We found that a position control paradigm applied to a sphere performed mostly superior in comparison to button-supported controller interaction. For discrete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used for avatar teleportation in a large virtual environment. Results showed that users subjectively preferred the sphere-based technique over regular controllers and on average, achieved lower task times and higher accuracy. To conclude the thesis, we discuss our findings, insights, and subsequent contribution to our central research questions to derive recommendations for designing techniques based on spherical input devices and an outlook on the future development of spherical devices in the mixed reality spectrum.Die Popularität von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche Head-Mounted Displays (HMDs) zurückzuführen. Ob in Spielen oder professionellen Anwendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde digitale Welten versetzen oder die reale Welt überzeugend erweitern. Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind, so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso natürliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interaktion ermöglichen, hätten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental zugänglicher zu machen, insbesondere für Unerfahrene. Die Forschung an Tangible User Interfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und so hat sich gezeigt, dass greifbare Interaktion für zahlreiche Anwendungsfälle signifikante Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von greifbaren Interfaces dar, insbesondere aufgrund ihrer Fähigkeit, beliebige sphärische virtuelle Inhalte vollständig verkörpern zu können. Generell entwickeln sich sphärische Geräte zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumenten, die auf eine breite Palette von Interaktionstechniken zurückgreifen können. Diese Dissertation untersucht primär die Anwendung von STUIs in MR-Umgebungen durch einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten. Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der Benutzerleistung im Allgemeinen und der Fähigkeit von STUIs, die sich lediglich auf ihre Form verlassen, komplexe Interaktionstechniken zu unterstützen. Zunächst erforschen wir, wie sphärische Geräte immersive Visualisierungen verkörpern können. Eine erste Studie ergründet die Praxistauglichkeit einer einfach konstruierten, getrackten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-Touch-Interaktion auf einer sphärischen Oberfläche und vergleichen zwei Kugelgrößen mit VR-Controllern. Die Ergebnisse bestätigten die Praxistauglichkeit des Prototyps und deuten auf verbesserte Mustererkennung sowie Vorteile für die kleinere Kugel hin. Zweitens, um die Validität von VR als Prototyping-Technologie zu bekräftigen, demonstrieren wir, wie ein großes, anfassbares sphärisches Display in VR simuliert werden kann. Es zeigt sich, wie VR die Möglichkeiten realer sphärischer Displays substantiell erweitern kann, indem eine simulierte Multi-Touch-Oberfläche um die Fähigkeit der physischen Rotation ergänzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren sphärischen Displays. Drittens präsentiert diese Arbeit ein Konzept für ein sphärisches Eingabegerät für Tangible AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende Fähigkeiten zur Objektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und vergleichen es mit Eingabetechniken deren Hardwarekomplexität zunehmend steigt. Unsere Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von einer Controller-Variante übertroffen wird, die physische Knöpfe und ein Touchpad verwendet und somit nicht auf unterschiedliche Modi angewiesen ist. Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen wir zwei gegensätzliche Ansätze: eine kontinuierliche und eine diskrete Technik. Für die erste präsentieren wir ein sphärisches Eingabegerät zur Fortbewegung, das zwei verschiedene Paradigmen unterstützt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich, dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller, im Vergleich zu regulärer Controller-Interaktion, die zusätzlich auf physische Knöpfe zurückgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evaluieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature, SWIM), die für die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Technik im Vergleich zu regulären Controllern und im Durchschnitt eine schnellere Lösung der Aufgaben sowie eine höhere Genauigkeit. Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus resultierenden Beiträge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen für die Gestaltung von Techniken auf Basis kugelförmiger Eingabegeräte und einen Ausblick auf die mögliche zukünftige Entwicklung sphärischer Eingabegräte im Mixed-Reality-Bereich abzuleiten

    Handheld Augmented Reality: Effect of registration jitter on cursor-based pointing techniques

    No full text
    International audienceHandheld Augmented Reality relies on the registration of digital content on physical objects. Yet, the accuracy of this registration depends on environmental conditions. It is therefore important to study the impact of registration jitter on interaction and in particular on pointing at augmented objects where precision may be required. We present an experiment that compares the effect of registration jitter on the following two pointing techniques: (1) screen-centered crosshair pointing; and (2) relative pointing with a cursor bound to the physical object's frame of reference and controlled by indirect relative touch strokes on the screen. The experiment considered both tablet and smartphone form factors. Results indicate that relative pointing in the frame of the physical object is less error prone and is less subject to registration jitter than screencentered crosshair pointing

    Exploring the Front Touch Interface for Virtual Reality Headsets

    Full text link
    In this paper, we propose a new interface for virtual reality headset: a touchpad in front of the headset. To demonstrate the feasibility of the front touch interface, we built a prototype device, explored VR UI design space expansion, and performed various user studies. We started with preliminary tests to see how intuitively and accurately people can interact with the front touchpad. Then, we further experimented various user interfaces such as a binary selection, a typical menu layout, and a keyboard. Two-Finger and Drag-n-Tap were also explored to find the appropriate selection technique. As a low-cost, light-weight, and in low power budget technology, a touch sensor can make an ideal interface for mobile headset. Also, front touch area can be large enough to allow wide range of interaction types such as multi-finger interactions. With this novel front touch interface, we paved a way to new virtual reality interaction methods

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article
    • …
    corecore