2 research outputs found

    Graph Convolutional Networks for Coronary Artery Segmentation in Cardiac CT Angiography

    Full text link
    Detection of coronary artery stenosis in coronary CT angiography (CCTA) requires highly personalized surface meshes enclosing the coronary lumen. In this work, we propose to use graph convolutional networks (GCNs) to predict the spatial location of vertices in a tubular surface mesh that segments the coronary artery lumen. Predictions for individual vertex locations are based on local image features as well as on features of neighboring vertices in the mesh graph. The method was trained and evaluated using the publicly available Coronary Artery Stenoses Detection and Quantification Evaluation Framework. Surface meshes enclosing the full coronary artery tree were automatically extracted. A quantitative evaluation on 78 coronary artery segments showed that these meshes corresponded closely to reference annotations, with a Dice similarity coefficient of 0.75/0.73, a mean surface distance of 0.25/0.28 mm, and a Hausdorff distance of 1.53/1.86 mm in healthy/diseased vessel segments. The results showed that inclusion of mesh information in a GCN improves segmentation overlap and accuracy over a baseline model without interaction on the mesh. The results indicate that GCNs allow efficient extraction of coronary artery surface meshes and that the use of GCNs leads to regular and more accurate meshes.Comment: MICCAI 2019 Workshop on Graph Learning in Medical Image (GLMI

    Improving CCTA based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation

    Full text link
    Purpose: The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm from coronary computed tomography angiography (CCTA). Materials and methods: We assessed the potential added value of PVE integration as a part of the automatic coronary lumen segmentation algorithm by means of segmentation accuracy using the MICCAI 2012 challenge framework and by means of flow simulation overall accuracy, sensitivity, specificity, negative and positive predictive values and the receiver operated characteristic (ROC) area under the curve. We also evaluated the potential benefit of accounting for PVE in automatic segmentation for flow-simulation for lesions that were diagnosed as obstructive based on CCTA, which could have indicated a need for an invasive exam and revascularization. Results: Our segmentation algorithm improves the maximal surface distance error by ~39% compared to previously published method on the 18 datasets 50 from the MICCAI 2012 challenge with comparable Dice and mean surface distance. Results with and without accounting for PVE were comparable. In contrast, integrating PVE analysis into an automatic coronary lumen segmentation algorithm improved the flow simulation specificity from 0.6 to 0.68 with the same sensitivity of 0.83. Also, accounting for PVE improved the area under the ROC curve for detecting hemodynamically significant CAD from 0.76 to 0.8 compared to automatic segmentation without PVE analysis with invasive FFR threshold of 0.8 as the reference standard. The improvement in the AUC was statistically significant (N=76, Delong's test, p=0.012). Conclusion: Accounting for the partial volume effects in automatic coronary lumen segmentation algorithms has the potential to improve the accuracy of CCTA-based hemodynamic assessment of coronary artery lesions
    corecore