2 research outputs found

    Identify Speakers in Cocktail Parties with End-to-End Attention

    Full text link
    In scenarios where multiple speakers talk at the same time, it is important to be able to identify the talkers accurately. This paper presents an end-to-end system that integrates speech source extraction and speaker identification, and proposes a new way to jointly optimize these two parts by max-pooling the speaker predictions along the channel dimension. Residual attention permits us to learn spectrogram masks that are optimized for the purpose of speaker identification, while residual forward connections permit dilated convolution with a sufficiently large context window to guarantee correct streaming across syllable boundaries. End-to-end training results in a system that recognizes one speaker in a two-speaker broadcast speech mixture with 99.9% accuracy and both speakers with 93.9% accuracy, and that recognizes all speakers in three-speaker scenarios with 81.2% accuracy.Comment: Accepted by Interspeech 2020 for presentation; https://github.com/JunzheJosephZhu/Identify-Speakers-in-Cocktail-Parties-with-E2E-Attentio

    Latent space representation for multi-target speaker detection and identification with a sparse dataset using Triplet neural networks

    Full text link
    We present an approach to tackle the speaker recognition problem using Triplet Neural Networks. Currently, the ii-vector representation with probabilistic linear discriminant analysis (PLDA) is the most commonly used technique to solve this problem, due to high classification accuracy with a relatively short computation time. In this paper, we explore a neural network approach, namely Triplet Neural Networks (TNNs), to built a latent space for different classifiers to solve the Multi-Target Speaker Detection and Identification Challenge Evaluation 2018 (MCE 2018) dataset. This training set contains ii-vectors from 3,631 speakers, with only 3 samples for each speaker, thus making speaker recognition a challenging task. When using the train and development set for training both the TNN and baseline model (i.e., similarity evaluation directly on the ii-vector representation), our proposed model outperforms the baseline by 23%. When reducing the training data to only using the train set, our method results in 309 confusions for the Multi-target speaker identification task, which is 46% better than the baseline model. These results show that the representational power of TNNs is especially evident when training on small datasets with few instances available per class.Comment: Accepted for ASRU 201
    corecore