72 research outputs found

    DisCLIP: Open-Vocabulary Referring Expression Generation

    Full text link
    Referring Expressions Generation (REG) aims to produce textual descriptions that unambiguously identifies specific objects within a visual scene. Traditionally, this has been achieved through supervised learning methods, which perform well on specific data distributions but often struggle to generalize to new images and concepts. To address this issue, we present a novel approach for REG, named DisCLIP, short for discriminative CLIP. We build on CLIP, a large-scale visual-semantic model, to guide an LLM to generate a contextual description of a target concept in an image while avoiding other distracting concepts. Notably, this optimization happens at inference time and does not require additional training or tuning of learned parameters. We measure the quality of the generated text by evaluating the capability of a receiver model to accurately identify the described object within the scene. To achieve this, we use a frozen zero-shot comprehension module as a critique of our generated referring expressions. We evaluate DisCLIP on multiple referring expression benchmarks through human evaluation and show that it significantly outperforms previous methods on out-of-domain datasets. Our results highlight the potential of using pre-trained visual-semantic models for generating high-quality contextual descriptions

    Dealing with Semantic Underspecification in Multimodal NLP

    Full text link
    Intelligent systems that aim at mastering language as humans do must deal with its semantic underspecification, namely, the possibility for a linguistic signal to convey only part of the information needed for communication to succeed. Consider the usages of the pronoun they, which can leave the gender and number of its referent(s) underspecified. Semantic underspecification is not a bug but a crucial language feature that boosts its storage and processing efficiency. Indeed, human speakers can quickly and effortlessly integrate semantically-underspecified linguistic signals with a wide range of non-linguistic information, e.g., the multimodal context, social or cultural conventions, and shared knowledge. Standard NLP models have, in principle, no or limited access to such extra information, while multimodal systems grounding language into other modalities, such as vision, are naturally equipped to account for this phenomenon. However, we show that they struggle with it, which could negatively affect their performance and lead to harmful consequences when used for applications. In this position paper, we argue that our community should be aware of semantic underspecification if it aims to develop language technology that can successfully interact with human users. We discuss some applications where mastering it is crucial and outline a few directions toward achieving this goal.Comment: To appear in the Proceedings of ACL 2023 (main conference). 13 pages, 3 figure

    Communication-based Evaluation for Natural Language Generation

    Get PDF
    Natural language generation (NLG) systems are commonly evaluated using n-gram overlap measures (e.g. BLEU, ROUGE). These measures do not directly capture semantics or speaker intentions, and so they often turn out to be misaligned with our true goals for NLG. In this work, we argue instead for communication-based evaluations: assuming the purpose of an NLG system is to convey information to a reader/listener, we can directly evaluate its effectiveness at this task using the Rational Speech Acts model of pragmatic language use. We illustrate with a color reference dataset that contains descriptions in pre-defined quality categories, showing that our method better aligns with these quality categories than do any of the prominent n-gram overlap methods
    • …
    corecore