3 research outputs found

    Pragmatic Authenticated Key Agreement for IEEE Std 802.15.6

    Get PDF
    The IEEE Std 802.15.6 is the latest international standard for Wireless Body Area Networks (WBANs). The security of communication in this standard is based upon four elliptic-curve based key agreement protocols. These protocols have been shown to exhibit serious security vulnerabilities but surprisingly, do not provision any privacy guarantees. To date, no suitable key agreement protocol has been proposed which fulfils all the requisite objectives for IEEE Std 802.15.6. In this paper two key agreement protocols are presented which, in addition to being efficient and provisioning advance security properties, also offer the essential privacy attributes of anonymity and unlinkability. The protocols are also quantum-safe as they are independent of any public-key based operations. We develop a formal security and privacy model in an appropriate complexity-theoretic framework and prove the proposed protocols secure in this model

    A note on ``a multi-instance cancelable fingerprint biometric based secure session key agreement protocol employing elliptic curve cryptography and a double hash function\u27\u27

    Get PDF
    We show that the key agreement scheme [Multim. Tools Appl. 80:799-829, 2021] is flawed. (1) The scheme is a hybrid which piles up various tools such as public key encryption, signature, symmetric key encryption, hash function, cancelable templates from thumb fingerprints, and elliptic curve cryptography. These tools are excessively used because key agreement is just a simple cryptographic primitive in contrast to public key encryption. (2) The involved reliance is very intricate. Especially, the requirement for a secure channel between two parties is generally unavailable

    Pragmatic authenticated key agreement for IEEE Std 802.15.6

    No full text
    The IEEE Std 802.15.6 is the latest international standard for Wireless Body Area Networks. The security of communication in this standard is based upon four elliptic-curve-based key agreement protocols. These protocols have been shown to exhibit serious security vulnerabilities but surprisingly, do not provision any privacy guarantees. To date, no suitable key agreement protocol has been proposed which fulfills all the requisite objectives for IEEE Std 802.15.6. In this paper, two key agreement protocols are presented which, in addition to being efficient and provisioning advance security properties, also offer the essential privacy attributes of anonymity and unlinkability. We develop a formal security and privacy model in an appropriate complexity-theoretic framework and prove the proposed protocols secure in this model.ISSN:1615-5262ISSN:1615-527
    corecore