14,519 research outputs found

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    A look ahead approach to secure multi-party protocols

    Get PDF
    Secure multi-party protocols have been proposed to enable non-colluding parties to cooperate without a trusted server. Even though such protocols prevent information disclosure other than the objective function, they are quite costly in computation and communication. Therefore, the high overhead makes it necessary for parties to estimate the utility that can be achieved as a result of the protocol beforehand. In this paper, we propose a look ahead approach, specifically for secure multi-party protocols to achieve distributed k-anonymity, which helps parties to decide if the utility benefit from the protocol is within an acceptable range before initiating the protocol. Look ahead operation is highly localized and its accuracy depends on the amount of information the parties are willing to share. Experimental results show the effectiveness of the proposed methods

    A Flexible Network Approach to Privacy of Blockchain Transactions

    Full text link
    For preserving privacy, blockchains can be equipped with dedicated mechanisms to anonymize participants. However, these mechanism often take only the abstraction layer of blockchains into account whereas observations of the underlying network traffic can reveal the originator of a transaction request. Previous solutions either provide topological privacy that can be broken by attackers controlling a large number of nodes, or offer strong and cryptographic privacy but are inefficient up to practical unusability. Further, there is no flexible way to trade privacy against efficiency to adjust to practical needs. We propose a novel approach that combines existing mechanisms to have quantifiable and adjustable cryptographic privacy which is further improved by augmented statistical measures that prevent frequent attacks with lower resources. This approach achieves flexibility for privacy and efficency requirements of different blockchain use cases.Comment: 6 pages, 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS
    corecore