4 research outputs found

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    Feedback Control of Dynamic Bipedal Robot Locomotion

    Full text link

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    A Sounding Rocket Attitude Determination Algorithm Suitable For Implementation Using Low Cost Sensors

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2003The development of low-cost sensors has generated a corresponding movement to integrate them into many different applications. One such application is determining the rotational attitude of an object. Since many of these low-cost sensors are less accurate than their more expensive counterparts, their noisy measurements must be filtered to obtain optimum results. This work describes the development, testing, and evaluation of four filtering algorithms for the nonlinear sounding rocket attitude determination problem. Sun sensor, magnetometer, and rate sensor measurements are simulated. A quatenion formulation is used to avoid singularity problems associated with Euler angles and other three-parameter approaches. Prior to filtering, Gauss-Newton error minimization is used to reduce the six reference vector components to four quaternion components that minimize a quadratic error function. Two of the algorithms are based on the traditional extended Kalman filter (EKF) and two are based on the recently developed unscented Kalman filter (UKF). One of each incorporates rate measurements, while the others rely on differencing quaternions. All incorporate a simplified process model for state propagation allowing the algorithms to be applied to rockets with different physical characteristics, or even to other platforms. Simulated data are used to develop and test the algorithms, and each successfully estimates the attitude motion of the rocket, to varying degrees of accuracy. The UKF-based filter that incorporates rate sensor measurements demonstrates a clear performance advantage over both EKFs and the UKF without rate measurements. This is due to its superior mean and covariance propagation characteristics and the fact that differencing generates noisier rates than measuring. For one sample case, the "pointing accuracy" of the rocket spin axis is improved by approximately 39 percent over the EKF that uses rate measurements and by 40 percent over the UKF without rates. The performance of this UKF-based algorithm is evaluated under other-than-nominal conditions and proves robust with respect to data dropouts, motion other than predicted and over a wide range of sensor accuracies. This UKF-based algorithm provides a viable low cost alternative to the expensive attitude determination systems currently employed on sounding rockets
    corecore