72 research outputs found

    Emulation of floating memcapacitors and meminductors using current conveyors

    Full text link
    We suggest circuit realizations of emulators transforming memristive devices into effective floating memcapacitive and meminductive systems. The emulator's circuits are based on second generation current conveyors and involve either four single-output or two dual-output current conveyors. The equations governing the resulting memcapactive and meminductive systems are presented.Comment: Electronics Letters (in press

    Fourier Response of a Memristor: Generation of High Harmonics with Increasing Weights

    Full text link
    We investigate the Fourier transform of the current through a memristor when the applied-voltage frequency is smaller than the characteristic memristor frequency, and the memristor shows hysteresis in the current-voltage plane. We find that when the hysteresis curve is "smooth", the current Fourier transform has weights at odd and even harmonics that decay rapidly and monotonically with the order of the harmonic; when the hysteresis curve is "sharp", the Fourier transform of the current is significantly broader, with non-monotonic weights at high harmonics. We present a simple model which shows that this qualitative change in the Fourier spectrum is solely driven by the saturation of memristance during a voltage cycle, and not independently by various system parameters such as applied or memristor frequencies, and the non-linear dopant drift.Comment: 5 pages, 3 figure

    A Compact CMOS Memristor Emulator Circuit and its Applications

    Full text link
    Conceptual memristors have recently gathered wider interest due to their diverse application in non-von Neumann computing, machine learning, neuromorphic computing, and chaotic circuits. We introduce a compact CMOS circuit that emulates idealized memristor characteristics and can bridge the gap between concepts to chip-scale realization by transcending device challenges. The CMOS memristor circuit embodies a two-terminal variable resistor whose resistance is controlled by the voltage applied across its terminals. The memristor 'state' is held in a capacitor that controls the resistor value. This work presents the design and simulation of the memristor emulation circuit, and applies it to a memcomputing application of maze solving using analog parallelism. Furthermore, the memristor emulator circuit can be designed and fabricated using standard commercial CMOS technologies and opens doors to interesting applications in neuromorphic and machine learning circuits.Comment: Submitted to International Symposium of Circuits and Systems (ISCAS) 201
    • …
    corecore