211,376 research outputs found

    Emergent quantum state designs from individual many-body wavefunctions

    Full text link
    Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of thermalization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state kk-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that kk-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.Comment: 7+19 pages, 6 figure

    The Internet as a Diversion

    Get PDF
    Presents survey findings on the extent to which people who use online sources of economic and financial information also use the Internet to take their minds off of the recession. Analyzes data by online activity, age, gender, and financial situation

    A Complete Theory of Everything (will be subjective)

    Full text link
    Increasingly encompassing models have been suggested for our world. Theories range from generally accepted to increasingly speculative to apparently bogus. The progression of theories from ego- to geo- to helio-centric models to universe and multiverse theories and beyond was accompanied by a dramatic increase in the sizes of the postulated worlds, with humans being expelled from their center to ever more remote and random locations. Rather than leading to a true theory of everything, this trend faces a turning point after which the predictive power of such theories decreases (actually to zero). Incorporating the location and other capacities of the observer into such theories avoids this problem and allows to distinguish meaningful from predictively meaningless theories. This also leads to a truly complete theory of everything consisting of a (conventional objective) theory of everything plus a (novel subjective) observer process. The observer localization is neither based on the controversial anthropic principle, nor has it anything to do with the quantum-mechanical observation process. The suggested principle is extended to more practical (partial, approximate, probabilistic, parametric) world models (rather than theories of everything). Finally, I provide a justification of Ockham's razor, and criticize the anthropic principle, the doomsday argument, the no free lunch theorem, and the falsifiability dogma.Comment: 26 LaTeX page

    Benchmarking integrated photonic architectures

    Get PDF
    Photonic platforms represent a promising technology for the realization of several quantum communication protocols and for experiments of quantum simulation. Moreover, large-scale integrated interferometers have recently gained a relevant role for restricted models of quantum computing, specifically with Boson Sampling devices. Indeed, various linear optical schemes have been proposed for the implementation of unitary transformations, each one suitable for a specific task. Notwithstanding, so far a comprehensive analysis of the state of the art under broader and realistic conditions is still lacking. In the present work we address this gap, providing in a unified framework a quantitative comparison of the three main photonic architectures, namely the ones with triangular and square designs and the so-called fast transformations. All layouts have been analyzed in presence of losses and imperfect control over the reflectivities and phases of the inner structure. Our results represent a further step ahead towards the implementation of quantum information protocols on large-scale integrated photonic devices.Comment: 10 pages, 6 figures + 2 pages Supplementary Informatio
    • …
    corecore