130,340 research outputs found

    An Updating Method for Finite Element Models of Flexible-Link Mechanisms Based on an Equivalent Rigid-Link System

    Get PDF
    This paper proposes a comprehensive methodology to update dynamic models of flexible-link mechanisms (FLMs) modeled through ordinary differential equations. The aim is to correct mass, stiffness, and damping matrices of dynamic models, usually based on nominal and uncertain parameters, to accurately represent the main vibrational modes within the bandwidth of interest. Indeed, the availability of accurate models is a fundamental step for the synthesis of effective controllers, state observers, and optimized motion profiles, as those employed in modern control schemes. The method takes advantage of the system dynamic model formulated through finite elements and through the representation of the total motion as the sum of a large rigid-body motion and the elastic deformation. Model updating is not straightforward since the resulting model is nonlinear and its coordinates cannot be directly measured. Hence, the nonlinear model is linearized about an equilibrium point to compute the eigenstructure and to compare it with the results of experimental modal analysis. Once consistency between the model coordinates and the experimental data is obtained through a suitable transformation, model updating has been performed solving a constrained convex optimization problem. Constraints also include results from static tests. Some tools to improve the problem conditioning are also proposed in the formulation adopted, to handle large dimensional models and achieve reliable results. The method has been experimentally applied to a challenging system: a planar six-bar linkage manipulator. The results prove their capability to improve the model accuracy in terms of eigenfrequencies and mode shapes

    A localization and updating strategy of large finite element models in structural dynamics

    Get PDF
    The purpose of this paper is to evaluate the application of the error of constitutive law method to the updating of large FE models of space structures using FRF experimental results. First, we briefly recall the theoretical basis of this method in modal and frequency approaches. Then, the notion of visibility is introduced to improve the modelling of localization error and the quality of modal updating, for low frequencies. Finally we propose a global strategy and discuss the results we obtained on satellite JASON2

    The development of finite element software for creep deformation and damage analysis of weldment

    Get PDF
    This paper presents the development of finite element software for creep deformation and damage analysis of weldment. The development and benchmark test of the software under plane stress, plane strain, axisymmetric, and 3 dimensional cases were reported in previous work [1]. This paper primarily consists of two parts: 1) the structure of the new FE software and the existing FE library applied in obtaining such computational tool via an approach for stress and field variable updating; 2) the development and validation of stress update; and 3) the development of validation of multi-material zones version. This paper contributes to the computational creep damage mechanics in general and particular to the design and the development of finite element software for creep damage analysis of multi-material zone
    corecore