1,251 research outputs found

    Functional Bandits

    Full text link
    We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases

    Simple regret for infinitely many armed bandits

    Get PDF
    We consider a stochastic bandit problem with infinitely many arms. In this setting, the learner has no chance of trying all the arms even once and has to dedicate its limited number of samples only to a certain number of arms. All previous algorithms for this setting were designed for minimizing the cumulative regret of the learner. In this paper, we propose an algorithm aiming at minimizing the simple regret. As in the cumulative regret setting of infinitely many armed bandits, the rate of the simple regret will depend on a parameter β\beta characterizing the distribution of the near-optimal arms. We prove that depending on β\beta, our algorithm is minimax optimal either up to a multiplicative constant or up to a log(n)\log(n) factor. We also provide extensions to several important cases: when β\beta is unknown, in a natural setting where the near-optimal arms have a small variance, and in the case of unknown time horizon.Comment: in 32th International Conference on Machine Learning (ICML 2015
    corecore