2 research outputs found

    Resource Allocation in LTE Advanced for QoS and Energy Efficiency

    Get PDF
    Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are establishing themselves as the new standard of 4G cellular networks in Europe and in several other parts of the world. Their success will largely depend on their ability to support Quality of Service for different types of users, at reasonable costs. The quality of service will depend on how effectively the cell bandwidth is shared among the users. The cost will depend – among many other factors – on how effectively we exploit the cell capacity. Being able to exploit bandwidth efficiently postpones the time when network upgrades are required. On the other hand, operation costs also depend on the energy efficiency of the cellular network, which should avoid wasting power when few users are connected. As for bandwidth efficiency, the recent LTE/LTE-A standards introduced MIMO (Multiple Input Multiple Output) transmission modes, which allow both reliability and efficiency to be increased. MIMO can increase the throughput significantly. In a MIMO system, the selection of the MIMO transmission modes (whether Transmission Diversity, Spatial Multiplexing, or Multi-User MIMO) plays a key feature in determining the achievable rate and the error probability experienced by the users. MIMO-unaware scheduling policies, which neglect the transmission mode selection problem, do not perform well under MIMO. In the current literature, few MIMO-aware LTE-A scheduling policies have been designed. However, despite being proposed for LTE-A, these solutions do not take into account some constraints inherent to LTE-A, hence leading to unfeasible allocations. In this work, we propose a new framework for Transmission Mode Selection and Frequency. Domain Packet Scheduling, which is compliant with the constraints of the LTE-A standard. The resource allocation framework accommodates real-time requirements and fairness on demand, while the bulk of the resources are allocated in an opportunistic fashion, i.e. so as to maximize the cell throughput. Our results show that our proposal provides real-time connections with the desired level of QoS, without utterly sacrificing the cell throughput. As far as energy efficiency is concerned, we studied the problem of minimizing the RF power used by the eNodeB, while maintaining the same level of service for the users. We devised a provisioning framework that exploits the Multicast/Broadcast over a Single Frequency Network (MBSFN) mechanism to deactivate the eNodeB on some Transmission Time Intervals (TTI), and computes the minimum-power activation required for guaranteeing a given level of service. Our results show that the provisioning framework is stable, and that it allows significant savings with respect to an always-on policy, with marginal impact on the latency experienced by the users

    Power-aware Opportunistic Downlink Scheduling in IEEE 802.16 wireless networks

    No full text
    The IEEE 802.16 is a standard for fixed and mobile Broadband Wireless Access (BWA). In this paper, we deal with two key challenges of 802.16-based networks. First, terminals close to cell edge experience poor channel quality, due to severe path-loss and high interference from concurrent transmissions in nearby cells. To address this issue, we propose a framework based on a static partitioning of bandwidth into chunks with different transmission power levels. Terminals with impaired channel conditions can then benefit from being allocated a higher amount of transmission power than the others. Secondly, transmissions should be scheduled according to Quality of Service (QoS) requirements to keep users with real-time video or voice calls satisfied, while best-effort connections should fairly share the remaining capacity. To this aim, we propose a scheduling algorithm, called Power-aware Opportunistic Downlink Scheduling (PODS), that aims at meeting both the QoS and fairness requirements, while taking into account the different power levels of the bandwidth chunks. The performance of the proposed scheduler is assessed through detailed packet-level simulation in realistic scenarios and compared with well-known scheduling algorithms. Results confirm that PODS is able to exploit power boosting to provide real-time connections with the desired level of QoS, irrespectively of their MSs' channel quality. (C) 2011 Elsevier B.V. All rights reserved
    corecore