623,507 research outputs found

    On the Feature Discovery for App Usage Prediction in Smartphones

    Full text link
    With the increasing number of mobile Apps developed, they are now closely integrated into daily life. In this paper, we develop a framework to predict mobile Apps that are most likely to be used regarding the current device status of a smartphone. Such an Apps usage prediction framework is a crucial prerequisite for fast App launching, intelligent user experience, and power management of smartphones. By analyzing real App usage log data, we discover two kinds of features: The Explicit Feature (EF) from sensing readings of built-in sensors, and the Implicit Feature (IF) from App usage relations. The IF feature is derived by constructing the proposed App Usage Graph (abbreviated as AUG) that models App usage transitions. In light of AUG, we are able to discover usage relations among Apps. Since users may have different usage behaviors on their smartphones, we further propose one personalized feature selection algorithm. We explore minimum description length (MDL) from the training data and select those features which need less length to describe the training data. The personalized feature selection can successfully reduce the log size and the prediction time. Finally, we adopt the kNN classification model to predict Apps usage. Note that through the features selected by the proposed personalized feature selection algorithm, we only need to keep these features, which in turn reduces the prediction time and avoids the curse of dimensionality when using the kNN classifier. We conduct a comprehensive experimental study based on a real mobile App usage dataset. The results demonstrate the effectiveness of the proposed framework and show the predictive capability for App usage prediction.Comment: 10 pages, 17 figures, ICDM 2013 short pape

    Compressed materialised views of semi-structured data

    Get PDF
    Query performance issues over semi-structured data have led to the emergence of materialised XML views as a means of restricting the data structure processed by a query. However preserving the conventional representation of such views remains a significant limiting factor especially in the context of mobile devices where processing power, memory usage and bandwidth are significant factors. To explore the concept of a compressed materialised view, we extend our earlier work on structural XML compression to produce a combination of structural summarisation and data compression techniques. These techniques provide a basis for efficiently dealing with both structural queries and valuebased predicates. We evaluate the effectiveness of such a scheme, presenting results and performance measures that show advantages of using such structures

    On using the WMAP distance priors in constraining the time evolving equation of state of dark energy

    Full text link
    Recently, the WMAP group has published their five-year data and considered the constraints on the time evolving equation of state of dark energy for the first time from the WMAP distance information. In this paper, we study the effectiveness of the usage of these distance information and find that these compressed CMB information can give similar constraints on dark energy parameters compared with the full CMB power spectrum if dark energy perturbations are included, however, once incorrectly neglecting the dark energy perturbations, the difference of the results are sizable.Comment: 4 pages, 3 figures, 2 table

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Collaborative Spectrum Sensing from Sparse Observations Using Matrix Completion for Cognitive Radio Networks

    Full text link
    In cognitive radio, spectrum sensing is a key component to detect spectrum holes (i.e., channels not used by any primary users). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage states. Unfortunately, due to power limitation and channel fading, available channel sensing information is far from being sufficient to tell the unoccupied channels directly. Aiming at breaking this bottleneck, we apply recent matrix completion techniques to greatly reduce the sensing information needed. We formulate the collaborative sensing problem as a matrix completion subproblem and a joint-sparsity reconstruction subproblem. Results of numerical simulations that validated the effectiveness and robustness of the proposed approach are presented. In particular, in noiseless cases, when number of primary user is small, exact detection was obtained with no more than 8% of the complete sensing information, whilst as number of primary user increases, to achieve a detection rate of 95.55%, the required information percentage was merely 16.8%
    corecore