1,121 research outputs found

    Distributed Denial of Service Attack Detection

    Get PDF
    Distributed Denial of Service (DDoS) attacks on web applications has been a persistent threat. Successful attacks can lead to inaccessible service to legitimate users in time and loss of business reputation. Most research effort on DDoS focused on network layer attacks. Existing approaches on application layer DDoS attack mitigation have limitations such as the lack of detection ability for low rate DDoS and not being able to detect attacks targeting resource files. In this work, we propose DDoS attack detection using concepts from information retrieval and machine learning. We include two popular concepts from information retrieval: Term Frequency (TF)-Inverse Document Frequency (IDF) and Latent Semantic Indexing (LSI). We analyzed web server log data generated in a distributed environment. Our evaluation results indicate that while all the approaches can detect various ranges of attacks, information retrieval approaches can identify attacks ongoing in a given session. All the approaches can detect three well known application level DDoS attacks (trivial, intermediate, advanced). Further, these approaches can enable an administrator identifying new pattern of DDoS attacks

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative

    Discovering New Vulnerabilities in Computer Systems

    Get PDF
    Vulnerability research plays a key role in preventing and defending against malicious computer system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals today tirelessly launch malicious exploitations, threatening every aspect of daily computing. to effectively protect computer systems from devastation, it is imperative to discover and mitigate vulnerabilities before they fall into the offensive parties\u27 hands. This dissertation is dedicated to the research and discovery of new design and deployment vulnerabilities in three very different types of computer systems.;The first vulnerability is found in the automatic malicious binary (malware) detection system. Binary analysis, a central piece of technology for malware detection, are divided into two classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both classes of analyses to complement each other\u27s strengths and weaknesses for improved detection results. However, we found that the commonly seen design patterns may suffer from evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing a novel binary obfuscation technique.;The second vulnerability is located in the design of server system power management. Technological advancements have improved server system power efficiency and facilitated energy proportional computing. However, the change of power profile makes the power consumption subjected to unaudited influences of remote parties, leaving the server systems vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on a standalone open Web server, measure the extent of the damage, and present a preliminary defense strategy.;The third vulnerability is discovered in the application of server virtualization technologies. Server virtualization greatly benefits today\u27s data centers and brings pervasive cloud computing a step closer to the general public. However, the practice of physical co-hosting virtual machines with different security privileges risks introducing covert channels that seriously threaten the information security in the cloud. We study the construction of high-bandwidth covert channels via the memory sub-system, and show a practical exploit of cross-virtual-machine covert channels on virtualized x86 platforms

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    Full text link
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyberattacks
    corecore