15,539 research outputs found

    Spectral proper orthogonal decomposition

    Get PDF
    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically optimal POD to the spectrally pure Fourier decomposition by changing a single parameter. In this article, SPOD is motivated from phenomenological considerations of the POD autocorrelation matrix and justified from dynamical system theory. The new method is further applied to three sets of PIV measurements of flows from very different engineering problems. We consider the flow of a swirl-stabilized combustor, the wake of an airfoil with a Gurney flap, and the flow field of the sweeping jet behind a fluidic oscillator. For these examples, the commonly used methods fail to assign the relevant coherent structures to single modes. The SPOD, however, achieves a proper separation of spatially and temporally coherent structures, which are either hidden in stochastic turbulent fluctuations or spread over a wide frequency range

    A tale of two airfoils: resolvent-based modelling of an oscillator vs. an amplifier from an experimental mean

    Get PDF
    The flows around a NACA 0018 airfoil at a Reynolds number of 10250 and angles of attack of alpha = 0 (A0) and alpha = 10 (A10) are modelled using resolvent analysis and limited experimental measurements obtained from particle image velocimetry. The experimental mean velocity profiles are data-assimilated so that they are solutions of the incompressible Reynolds-averaged Navier-Stokes equations forced by Reynolds stress terms which are derived from experimental data. Spectral proper orthogonal decompositions (SPOD) of the velocity fluctuations and nonlinear forcing find low-rank behaviour at the shedding frequency and its higher harmonics for the A0 case. In the A10 case, low-rank behaviour is observed for the velocity fluctuations in two bands of frequencies. Resolvent analysis of the data-assimilated means identifies low-rank behaviour only in the vicinity of the shedding frequency for A0 and none of its harmonics. The resolvent operator for the A10 case, on the other hand, identifies two linear mechanisms whose frequencies are a close match with those identified by SPOD. It is also shown that the second linear mechanism, corresponding to the Kelvin-Helmholtz instability in the shear layer, cannot be identified just by considering the time-averaged experimental measurements as a mean flow due to the fact that experimental data are missing near the leading edge. The A0 case is classified as an oscillator where the flow is organised around an intrinsic instability while the A10 case behaves like an amplifier whose forcing is unstructured. For both cases, resolvent modes resemble those from SPOD when the operator is low-rank. To model the higher harmonics where this is not the case, we add parasitic resolvent modes, as opposed to classical resolvent modes which are the most amplified, by approximating the nonlinear forcing from limited triadic interactions of known resolvent modes.Comment: 32 pages, 23 figure

    Guide to Spectral Proper Orthogonal Decomposition

    Get PDF
    This paper discusses the spectral proper orthogonal decomposition and its use in identifying modes, or structures, in flow data. A specific algorithm based on estimating the cross-spectral density tensor with Welch’s method is presented, and guidance is provided on selecting data sampling parameters and understanding tradeoffs among them in terms of bias, variability, aliasing, and leakage. Practical implementation issues, including dealing with large datasets, are discussed and illustrated with examples involving experimental and computational turbulent flow data
    • …
    corecore