68 research outputs found

    A Low-Complexity Precoding Scheme for the Downlink of Multi-Cell Multi-User MIMO AF System

    Get PDF
    Because of its simplicity, amplify-and-forward (AF) is one of the most popular cooperative relaying technique. Relays are used in cooperative communication to improve reliability, coverage or spectral efficiency of cell-edge users. However, relays tend to increase the interferences seen by users of adjacent cells, particularly by the cell-edge users, when used in multi-cell systems. In this paper, we propose a low-complexity precoding scheme to mitigate the effect of other-cell interference (OCI) in cooperative communication. The scheme is designed by taking into account the interference plus noise covariance matrix of each user for mitigating the interference at each receiver by means of precoding at the relay node. Simulation results show the effectiveness of the proposed scheme, both in terms of sum-rate and computational complexity, when compared to other existing OCI-aware precoding algorithms for AF

    Power allocation for the downlink of nonregenerative cooperative multi-user MIMO communication system

    Full text link

    Low-Complexity Power Allocation Schemes for the Downlink of Nonregenerative Cooperative Multi-User MIMO Communication System

    Get PDF
    Abstract: Amplify-and-forward (AF) is one of the most popular and simple approaches to transmit information over a cooperative multi-input multi-output (MIMO) relay channel. In this paper, we propose two novel power allocation methods for the downlink of multi-user multi-input multi-output AF cooperative system, which are designed to optimise the sum-rate of the cooperative system according to the weighted sum-rate criterion. The main optimisation problem is not concave and our two methods aim at simplifying it in order to turn it into a concave problem, which can then be easily solved

    Near-Optimal Energy-Efficient Joint Resource Allocation for Multi-Hop MIMO-AF Systems

    Get PDF
    Energy efficiency (EE) is becoming an important performance indicator for ensuring both the economical and environmental sustainability of the next generation of communication networks. Equally, cooperative communication is an effective way of improving communication system performances. In this paper, we propose a near-optimal energy-efficient joint resource allocation algorithm for multi-hop multiple-input-multiple-output (MIMO) amplify-and-forward (AF) systems. We first show how to simplify the multivariate unconstrained EE-based problem, based on the fact that this problem has a unique optimal solution, and then solve it by means of a low-complexity algorithm. We compare our approach with classic optimization tools in terms of energy efficiency as well as complexity, and results indicate the near-optimality and low-complexity of our approach. As an application, we use our approach to compare the EE of multi-hop MIMO-AF with MIMO systems and our results show that the former outperforms the latter mainly when the direct link quality is poor

    Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for downlink multicarrier transmission with a shared user equipment (UE)-side distributed antenna system (SUDAS) which utilizes both licensed and unlicensed frequency bands for improving the system throughput. The joint UE selection and transceiver processing matrix design is formulated as a non-convex optimization problem for the maximization of the end-to-end system throughput (bits/s). In order to obtain a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel. Subsequently, the optimization problem is converted to a scalar optimization problem for multiple parallel channels, which is solved by using an asymptotically optimal iterative algorithm. Simulation results illustrate that the proposed resource allocation algorithm for the SUDAS achieves an excellent system performance and provides a spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, Scotland, UK, May 201

    Robust MMSE beamforming for multiantenna relay networks

    Get PDF
    In this paper, we propose a robust minimum mean square error (MMSE) based beamforming technique for multiantenna relay broadcast channels, where a multi-antenna base station transmits signal to single antenna users with the help of a multiantenna relay. The signal transmission from the base station to the single antenna users is completed in two time slots, where the relay receives the signal from the base station in the first time slot and it then forwards the received signal to different users based on amplify and forward protocol. We propose a robust beamforming technique for sum-power minimization problem with imperfect channel state information (CSI) between the relay and the users. This robust scheme is developed based on the worst-case optimization framework and Nemirovski Lemma by incorporating uncertainties in the CSI. The original optimization problem is divided into three subproblems due to joint non-convexity in terms of beamforming vectors at the base station, the relay amplification matrix, and receiver coefficients. These subproblems are formulated into a convex optimization framework by exploiting Nemirovski Lemma, and an iterative algorithm is developed by alternatively optimizing each of them with channel uncertainties. In addition, we provide an optimization framework to evaluate the achievable worst-case mean square error (MSE) of each user for a given set of design parameters. Simulation results have been provided to validate the convergence of the proposed algorithm

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication
    corecore