22 research outputs found

    Joint Power-control and Antenna Selection in User-Centric Cell-Free Systems with Mixed Resolution ADC

    Get PDF
    In this paper, we propose a scheme for the joint optimization of the user transmit power and the antenna selection at the access points (AP)s of a user-centric cell-free massive multiple-input-multiple-output (UC CF-mMIMO) system. We derive an approximate expression for the achievable uplink rate of the users in a UC CF-mMIMO system in the presence of a mixed analog-to-digital converter (ADC) resolution profile at the APs. Using the derived approximation, we propose to maximize the uplink sum-rate of UC CF-mMIMO systems subject to energy constraints at the APs. An alternating-optimization solution is proposed using binary particle swarm optimization (BPSO) and successive convex approximation (SCA). We also propose a complete meta-heuristic-based solution that can be used as an alternative solution for applications where latency is the critical metric. Along with this, we used a genetic algorithm (GA)-based approach to compare the performance of the proposed algorithm. We study the impact of various system parameters on the performance of the system

    Millimeter Wave Systems for Wireless Cellular Communications

    Full text link
    This thesis considers channel estimation and multiuser (MU) data transmission for massive MIMO systems with fully digital/hybrid structures in mmWave channels. It contains three main contributions. In this thesis, we first propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals of the strongest components as well as scattering components of the users at the base station (BS) with fully digital structure. Our results show that the proposed maximum-ratio transmission (MRT) based on the strongest components can achieve a higher data rate than that of the conventional MRT, under the same mean squared errors (MSE). Second, we develop a low-complexity channel estimation and beamformer/precoder design scheme for hybrid mmWave systems. In addition, the proposed scheme applies to both non-sparse and sparse mmWave channel environments. We then leverage the proposed scheme to investigate the downlink achievable rate performance. The results show that the proposed scheme obtains a considerable achievable rate of fully digital systems. Taking into account the effect of various types of errors, we investigate the achievable rate performance degradation of the considered scheme. Third, we extend our proposed scheme to a multi-cell MU mmWave MIMO network. We derive the closed-form approximation of the normalized MSE of channel estimation under pilot contamination over Rician fading channels. Furthermore, we derive a tight closed-form approximation and the scaling law of the average achievable rate. Our results unveil that channel estimation errors, the intra-cell interference, and the inter-cell interference caused by pilot contamination over Rician fading channels can be efficiently mitigated by simply increasing the number of antennas equipped at the desired BS.Comment: Thesi

    DOA Estimation for Hybrid Massive MIMO Systems using Mixed-ADCs: Performance Loss and Energy Efficiency

    Get PDF
    Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution analog-to-digital converters (ADCs) and hybrid analog and digital (HAD) structure is two low-cost choice with acceptable performance loss. In this paper, the combination of the mixedADC architecture and HAD structure employed at receiver is proposed for direction of arrival (DOA) estimation, which will be applied to the beamforming tracking and alignment in 6G. By adopting the additive quantization noise model, the exact closedform expression of the Cramer-Rao lower bound (CRLB) for the HAD architecture with mixed-ADCs is derived. Moreover, the closed-form expression of the performance loss factor is derived as a benchmark. In addition, to take power consumption into account, energy efficiency is also investigated in our paper. The numerical results reveal that the HAD structure with mixedADCs can significantly reduce the power consumption and hardware cost. Furthermore, that architecture is able to achieve a better trade-off between the performance loss and the power consumption. Finally, adopting 2-4 bits of resolution may be a good choice in practical massive MIMO systems.Comment: 11 pages, 7 figure

    Channel hardening in cell-free and user-centric massive MIMO networks with spatially correlated ricean fading

    Get PDF
    The irruption of the cell-free (CF) massive multiple-input multiple-output (MIMO) network topology has meant taking one step further the concept of massive MIMO as a means to provide uniform service in large coverage areas. A key property of massive MIMO networks is channel hardening, by which the channel becomes deterministic when the number of antennas grows large enough relative to the number of serviced users, easing the signal processing and boosting the performance of simple precoders. However, in CF massive MIMO, the fulfillment of this condition depends on several aspects that are not considered in classical massive MIMO systems. In this work, we address the presence of channel hardening in both CF massive MIMO and the recently appeared user-centric (UC) approach, under a spatially correlated Ricean fading channel using distributed and cooperative precoding and combining schemes and different power control strategies for both the downlink (DL) and uplink (UL) segments. We show that the line-of-sight (LOS) component, spatially correlated antennas and UC schemes have an impact on how the channel hardens. In addition, we examine the existent gap between the estimated achievable rate and the true network performance when channel hardening is compromised. Exact closed-form expressions for both the hardening metric and achievable DL/UL rates are given as well.This work was supported in part by the Agencia Estatal de InvestigaciĂłn and Fondo Europeo de Desarrollo Regional (AEI/FEDER, UE), Ministerio de EconomĂ­a y Competitividad (MINECO), Spain, through the project TERESA under Grant TEC2017-90093-C3-2-R and Grant TEC2017-90093-C3-3-R, and in part by the Spanish CDTI PID through the project OPALL5G: Optimization of Small Cells Performance in 5G NR

    Spectral and Energy Efficiency of Uplink D2D Underlaid Massive MIMO Cellular Networks

    Get PDF
    CCBY One of key 5G scenarios is that device-to-device (D2D) and massive multiple-input multiple-output (MIMO) will be co-existed. However, interference in the uplink D2D underlaid massive MIMO cellular networks needs to be coordinated, due to the vast cellular and D2D transmissions. To this end, this paper introduces a spatially dynamic power control solution for mitigating the cellular-to-D2D and D2D-to-cellular interference. In particular, the proposed D2D power control policy is rather flexible including the special cases of no D2D links or using maximum transmit power. Under the considered power control, an analytical approach is developed to evaluate the spectral efficiency (SE) and energy efficiency (EE) in such networks. Thus, the exact expressions of SE for a cellular user or D2D transmitter are derived, which quantify the impacts of key system parameters such as massive MIMO antennas and D2D density. Moreover, the D2D scale properties are obtained, which provide the sufficient conditions for achieving the anticipated SE. Numerical results corroborate our analysis and show that the proposed power control solution can efficiently mitigate interference between the cellular and D2D tier. The results demonstrate that there exists the optimal D2D density for maximizing the area SE of D2D tier. In addition, the achievable EE of a cellular user can be comparable to that of a D2D user

    Full-duplex MU-MIMO systems under the effects of non-ideal transceivers: performance analysis and power allocation optimization

    Get PDF
    Modern Technologies, particularly connectivity, increasingly support many facets of everyday life. The next generation of wireless communication systems aims to provide new advanced services and support new demands. These services are required to serve a massive number of devices and achieve higher spectral and energy efficiency, ultra-low latency, and reliable communication. The research community around the globe is still working on finding novel technologies to meet these requirements. Full duplex (FD) communications have been recognized as one of the promising wireless transmission candidates and gamechangers for the future of wireless communication and networking technologies, thanks to their ability to greatly improve spectral efficiency (SE) and dramatically enhance energy efficiency (EE). In this thesis, first, the influence of hardware impairment (HWI) on singleinput single-output (SISO) FD access point (AP) is studied. More precisely, the SE and EE when the system’s terminals have impaired transceivers are analyzed. Optimization problem for EE maximization is formulated to fulfill quality of service (QoS) and power budget constraints. An algorithm to solve the optimization problem by using the fractional programming theory and Karush–Kuhn–Tucker (KKT) conditions technique is proposed. [...
    corecore