4,768 research outputs found

    Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and Relaying Systems

    Get PDF
    The explosive proliferation of smart devices in the 5-th generation (5G) network expects 1,000-fold capacity enhancement, leading to the urgent need of highly resource-efficient technologies. Non-orthogonal multiple access (NOMA), a promising spectral efficient technology for 5G to serve multiple users concurrently, can be combined with massive multiple input multiple output (MIMO) and relaying technology, to achieve highly efficient communications. Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO and relaying systems. Due to hardware constraints and channel condition variation, the first topic of the thesis develops efficient antenna selection and user scheduling algorithms for sum rate maximization in two MIMO-NOMA scenarios. In the single-band scenario, the proposed algorithm improves antenna search efficiency by limiting the candidate antennas to those are beneficial to the relevant users. In the multi-band scenario, the proposed algorithm selects the antennas and users with the highest contribution total channel gain. Numerical results show that our proposed algorithms achieve similar performance to other algorithms with reduced complexity. The second part of the thesis proposes the relaying and power allocation scheme for the NOMA-assisted relaying system to serve multiple cell-edge users. The relay node decodes its own message from the source NOMA signal and transmits the remaining part of signal to cell-edge users. The power allocation scheme is developed by minimizing the system outage probability. To further evaluate the system performance, the ergodic capacity is approximated by analyzing the interference at cell-edge users. Numerical results proves the performance improvement of the proposed system over conventional orthogonal multiple access mechanism

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure
    • …
    corecore