15,279 research outputs found

    Grid-free compressive beamforming

    Get PDF
    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.Comment: 14 pages, 8 figures, journal pape

    False Data Injection Attacks on Phasor Measurements That Bypass Low-rank Decomposition

    Full text link
    This paper studies the vulnerability of phasor measurement units (PMUs) to false data injection (FDI) attacks. Prior work demonstrated that unobservable FDI attacks that can bypass traditional bad data detectors based on measurement residuals can be identified by detector based on low-rank decomposition (LD). In this work, a class of more sophisticated FDI attacks that captures the temporal correlation of PMU data is introduced. Such attacks are designed with a convex optimization problem and can always bypass the LD detector. The vulnerability of this attack model is illustrated on both the IEEE 24-bus RTS and the IEEE 118-bus systems.Comment: 6 pages, 4 figures, submitted to 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Distributed and parallel sparse convex optimization for radio interferometry with PURIFY

    Full text link
    Next generation radio interferometric telescopes are entering an era of big data with extremely large data sets. While these telescopes can observe the sky in higher sensitivity and resolution than before, computational challenges in image reconstruction need to be overcome to realize the potential of forthcoming telescopes. New methods in sparse image reconstruction and convex optimization techniques (cf. compressive sensing) have shown to produce higher fidelity reconstructions of simulations and real observations than traditional methods. This article presents distributed and parallel algorithms and implementations to perform sparse image reconstruction, with significant practical considerations that are important for implementing these algorithms for Big Data. We benchmark the algorithms presented, showing that they are considerably faster than their serial equivalents. We then pre-sample gridding kernels to scale the distributed algorithms to larger data sizes, showing application times for 1 Gb to 2.4 Tb data sets over 25 to 100 nodes for up to 50 billion visibilities, and find that the run-times for the distributed algorithms range from 100 milliseconds to 3 minutes per iteration. This work presents an important step in working towards computationally scalable and efficient algorithms and implementations that are needed to image observations of both extended and compact sources from next generation radio interferometers such as the SKA. The algorithms are implemented in the latest versions of the SOPT (https://github.com/astro-informatics/sopt) and PURIFY (https://github.com/astro-informatics/purify) software packages {(Versions 3.1.0)}, which have been released alongside of this article.Comment: 25 pages, 5 figure

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures
    • …
    corecore