621,691 research outputs found

    Quotient graphs for power graphs

    Get PDF
    In a previous paper of the first author a procedure was developed for counting the components of a graph through the knowledge of the components of its quotient graphs. We apply here that procedure to the proper power graph P0(G)\mathcal{P}_0(G) of a finite group GG, finding a formula for the number c(P0(G))c(\mathcal{P}_0(G)) of its components which is particularly illuminative when GSnG\leq S_n is a fusion controlled permutation group. We make use of the proper quotient power graph P~0(G)\widetilde{\mathcal{P}}_0(G), the proper order graph O0(G)\mathcal{O}_0(G) and the proper type graph T0(G)\mathcal{T}_0(G). We show that all those graphs are quotient of P0(G)\mathcal{P}_0(G) and demonstrate a strong link between them dealing with G=SnG=S_n. We find simultaneously c(P0(Sn))c(\mathcal{P}_0(S_n)) as well as the number of components of P~0(Sn)\widetilde{\mathcal{P}}_0(S_n), O0(Sn)\mathcal{O}_0(S_n) and T0(Sn)\mathcal{T}_0(S_n)

    Push is Fast on Sparse Random Graphs

    Full text link
    We consider the classical push broadcast process on a large class of sparse random multigraphs that includes random power law graphs and multigraphs. Our analysis shows that for every ε>0\varepsilon>0, whp O(logn)O(\log n) rounds are sufficient to inform all but an ε\varepsilon-fraction of the vertices. It is not hard to see that, e.g. for random power law graphs, the push process needs whp nΩ(1)n^{\Omega(1)} rounds to inform all vertices. Fountoulakis, Panagiotou and Sauerwald proved that for random graphs that have power law degree sequences with β>3\beta>3, the push-pull protocol needs Ω(logn)\Omega(\log n) to inform all but εn\varepsilon n vertices whp. Our result demonstrates that, for such random graphs, the pull mechanism does not (asymptotically) improve the running time. This is surprising as it is known that, on random power law graphs with 2<β<32<\beta<3, push-pull is exponentially faster than pull

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit
    corecore