2 research outputs found

    Power control algorithms for CDMA networks based on large system analysis

    Full text link
    Power control is a fundamental task accomplished in any wireless cellular network; its aim is to set the transmit power of any mobile terminal, so that each user is able to achieve its own target SINR. While conventional power control algorithms require knowledge of a number of parameters of the signal of interest and of the multiaccess interference, in this paper it is shown that in a large CDMA system much of this information can be dispensed with, and effective distributed power control algorithms may be implemented with very little information on the user of interest. An uplink CDMA system subject to flat fading is considered with a focus on the cases in which a linear MMSE receiver and a non-linear MMSE serial interference cancellation receiver are adopted; for the latter case new formulas are also given for the system SINR in the large system asymptote. Experimental results show an excellent agreement between the performance and the power profile of the proposed distributed algorithms and that of conventional ones that require much greater prior knowledge.Comment: To appear in the Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, June 24 - 29, 200

    Energy-Efficient Power Control in Multipath CDMA Channels via Large System Analysis

    Full text link
    This paper is focused on the design and analysis of power control procedures for the uplink of multipath code-division-multiple-access (CDMA) channels based on the large system analysis (LSA). Using the tools of LSA, a new decentralized power control algorithm aimed at energy efficiency maximization and requiring very little prior information on the interference background is proposed; moreover, it is also shown that LSA can be used to predict with good accuracy the performance and operational conditions of a large network operating at the equilibrium over a multipath channel, i.e. the power, signal-to-interference-plus-noise ratio (SINR) and utility profiles across users, wherein the utility is defined as the number of bits reliably delivered to the receiver for each energy-unit used for transmission. Additionally, an LSA-based performance comparison among linear receivers is carried out in terms of achieved energy efficiency at the equilibrium. Finally, the problem of the choice of the utility-maximizing training length is also considered. Numerical results show a very satisfactory agreement of the theoretical analysis with simulation results obtained with reference to systems with finite (and not so large) numbers of users.Comment: Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, September 15-18, 200
    corecore