4 research outputs found

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    Scenarios for Educational and Game Activities using Internet of Things Data

    Get PDF
    Raising awareness among young people and changing their behavior and habits concerning energy usage and the environment is key to achieving a sustainable planet. The goal to address the global climate problem requires informing the population on their roles in mitigation actions and adaptation of sustainable behaviors. Addressing climate change and achieve ambitious energy and climate targets requires a change in citizen behavior and consumption practices. IoT sensing and related scenario and practices, which address school children via discovery, gamification, and educational activities, are examined in this paper. Use of seawater sensors in STEM education, that has not previously been addressed, is included in these educational scenaria

    Bridging the gap between school and out-of-school science: A Making pedagogical approach

    Get PDF
    Making provides a beneficial learning environment that requires skills and knowledge from the areas of science, technology, engineering, and mathematics to design and construct a product or an artefact. In this paper the maker approach reflects on the pedagogical potential of learning through the design and deployment of an automated system that monitors and records environmental parameters in lakes and rivers. IoT technologies are used to connect schools with natural ecosystems, providing the opportunity to students to be actively involved in designing and developing technology artefacts to experiment with, and further, in the formulation of research questions, and in the processing and interpretation of research results and measurements. The study contributes to the research literature on bridging the gap between the school and out-of-school science

    Power conservation schemes for energy efficient data propagation in heterogeneous wireless sensor networks

    No full text
    We propose, implement and evaluate new energy conservation schemes for efficient data propagation in wireless sensor networks. Our protocols are adaptive, i.e. locally monitor the network conditions and accordingly adjust towards optimal operation choices. This dynamic feature is particularly beneficial in heterogeneous settings and in cases of re-deployment of sensor devices in the network area. We implement our protocols and evaluate their performance through a detailed simulation study using our extended version of ns-2. In particular we combine our schemes with known communication paradigms. The simulation findings demonstrate significant gains and good trade-offs in terms of delivery success, delay and energy dissipation. © 2005 IEEE
    corecore