3,069 research outputs found

    Clustered wireless sensor networks

    Get PDF
    The study of topology in randomly deployed wireless sensor networks (WSNs) is important in addressing the fundamental issue of stochastic coverage resulting from randomness in the deployment procedure and power management algorithms. This dissertation defines and studies clustered WSNs, WSNs whose topology due to the deployment procedure and the application requirements results in the phenomenon of clustering or clumping of nodes. The first part of this dissertation analyzes a range of topologies of clustered WSNs and their impact on the primary sensing objectives of coverage and connectivity. By exploiting the inherent advantages of clustered topologies of nodes, this dissertation presents techniques for optimizing the primary performance metrics of power consumption and network capacity. It analyzes clustering in the presence of obstacles, and studies varying levels of redundancy to determine the probability of coverage in the network. The proposed models for clustered WSNs embrace the domain of a wide range of topologies that are prevalent in actual real-world deployment scenarios, and call for clustering-specific protocols to enhance network performance. It has been shown that power management algorithms tailored to various clustering scenarios optimize the level of active coverage and maximize the network lifetime. The second part of this dissertation addresses the problem of edge effects and heavy traffic on queuing in clustered WSNs. In particular, an admission control model called directed ignoring model has been developed that aims to minimize the impact of edge effects in queuing by improving queuing metrics such as packet loss and wait time

    Problem Specific MOEA/D for Barrier Coverage with Wireless Sensors

    Get PDF
    Barrier coverage with wireless sensors aims at detecting intruders who attempt to cross a specific area, where wireless sensors are distributed remotely at random. This paper considers limited-power sensors with adjustable ranges deployed along a linear domain to form a barrier to detect intruding incidents. We introduce three objectives to minimize: 1) total power consumption while satisfying full coverage; 2) the number of active sensors to improve the reliability; and 3) the active sensor nodes' maximum sensing range to maintain fairness. We refer to the problem as the tradeoff barrier coverage (TBC) problem. With the aim of obtaining a better tradeoff among the three objectives, we present a multiobjective optimization framework based on multiobjective evolutionary algorithm (MOEA)/D, which is called problem specific MOEA/D (PS-MOEA/D). Specifically, we define a 2-tuple encoding scheme and introduce a cover-shrink algorithm to produce feasible and relatively optimal solutions. Subsequently, we incorporate problem-specific knowledge into local search, which allows search procedures for neighboring subproblems collaborate each other. By considering the problem characteristics, we analyze the complexity and incorporate a strategy of computational resource allocation into our algorithm. We validate our approach by comparing with four competitors through several most-used metrics. The experimental results demonstrate that PS-MOEA/D is effective and outperforms the four competitors in all the cases, which indicates that our approach is promising in dealing with TBC

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    The Sensing Capacity of Sensor Networks

    Full text link
    This paper demonstrates fundamental limits of sensor networks for detection problems where the number of hypotheses is exponentially large. Such problems characterize many important applications including detection and classification of targets in a geographical area using a network of sensors, and detecting complex substances with a chemical sensor array. We refer to such applications as largescale detection problems. Using the insight that these problems share fundamental similarities with the problem of communicating over a noisy channel, we define a quantity called the sensing capacity and lower bound it for a number of sensor network models. The sensing capacity expression differs significantly from the channel capacity due to the fact that a fixed sensor configuration encodes all states of the environment. As a result, codewords are dependent and non-identically distributed. The sensing capacity provides a bound on the minimal number of sensors required to detect the state of an environment to within a desired accuracy. The results differ significantly from classical detection theory, and provide an ntriguing connection between sensor networks and communications. In addition, we discuss the insight that sensing capacity provides for the problem of sensor selection.Comment: Submitted to IEEE Transactions on Information Theory, November 200

    Intelligent UAV-Assisted Localisation to Conserve Battery Energy in Military Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are extensively used in military applications for border area monitoring, battle-field surveillance, tracking enemy troops, where the sensor nodes run on battery power. Localisation of sensor nodes is extremely important to identify the location of event in military applications for further actions. Existing localisation algorithms consume more energy by heavy computation and communication overheads. The objective of the proposed research is to increase the lifetime of the military sensor networks by reducing the power consumption in each sensor node during localisation. For the state-of-the-art, we propose a novel intelligent unmanned aerial vehicle anchor node (IUAN) with an intelligent arc selection (IAS)-based centralised localisation algorithm, which removes computation cost and reduces communication cost at every sensor node. The IUAN collects the signal strength, distance data from sensor nodes and the central control station (CCS) computes the position of sensor nodes using IAS algorithm. Our approach significantly removes computation cost and reduces communication cost at each sensor node during localisation, thereby radically extends the lifetime and localisation coverage of the military sensor networks.Science Journal, Vol. 64, No. 6, November 2014, pp.557-563, DOI:http://dx.doi.org/10.14429/dsj.64.529

    Transmission Power Adjustment Scheme for Mobile Beacon-Assisted Sensor Localization

    Full text link
    © 2005-2012 IEEE. Localization, as a crucial service for sensor networks, is an energy-demanding process for both indoor and outdoor scenarios. GPS-based localization schemes are infeasible in remote, indoor areas, and it is not a cost-effective solution for large-scale networks. Single mobile-beacon architecture is recently considered to localize sensor networks with the aim of removing numerous GPS-equipped nodes. The critical issue for the mobile beacon-Assisted localization is to preserve the consumed power to increase the lifetime. This paper presents a novel power control scheme, namely 'Z-power,' for mobile beacon traveling along a predefined path. The proposed scheme takes the advantage of deterministic path traveled by the single beacon to efficiently adjust the transmission power. Based on the extensive results, the proposed power control scheme could successfully improve the beacon and sensors energy consumption about 25.37% and 34.09%, respectively. A significant energy-Accuracy tradeoff was achieved using Z-power, which could successfully keep the same level of accuracy while providing lower energy consumption. Another group of results collected when obstacle-handling algorithm was applied at the presence of obstacles. In this scenario, Z-power improves energy consumption and localization accuracy with the same level of success

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    • …
    corecore