552 research outputs found

    Power Allocation Based on SEP Minimization in Two-Hop Decode-and-Forward Relay Networks

    Full text link
    The problem of optimal power allocation among the relays in a two-hop decode-and-forward cooperative relay network with independent Rayleigh fading channels is considered. It is assumed that only the relays that decode the source message correctly contribute in data transmission. Moreover, only the knowledge of statistical channel state information is available. A new simple closed-form expression for the average symbol error probability is derived. Based on this expression, a new power allocation method that minimizes the average symbol error probability and takes into account the constraints on the total average power of all the relay nodes and maximum instant power of each relay node is developed. The corresponding optimization problem is shown to be a convex problem that can be solved using interior point methods. However, an approximate closed-form solution is obtained and shown to be practically more appealing due to significant complexity reduction. The accuracy of the approximation is discussed. Moreover, the so obtained closed-form solution gives additional insights into the optimal power allocation problem. Simulation results confirm the improved performance of the proposed power allocation scheme as compared to other schemes.Comment: 27 pages, 5 figures, submitted to the IEEE Trans. Signal Processing in Feb. 201

    Joint Bandwidth and Power Allocation with Admission Control in Wireless Multi-User Networks With and Without Relaying

    Full text link
    Equal allocation of bandwidth and/or power may not be efficient for wireless multi-user networks with limited bandwidth and power resources. Joint bandwidth and power allocation strategies for wireless multi-user networks with and without relaying are proposed in this paper for (i) the maximization of the sum capacity of all users; (ii) the maximization of the worst user capacity; and (iii) the minimization of the total power consumption of all users. It is shown that the proposed allocation problems are convex and, therefore, can be solved efficiently. Moreover, the admission control based joint bandwidth and power allocation is considered. A suboptimal greedy search algorithm is developed to solve the admission control problem efficiently. The conditions under which the greedy search is optimal are derived and shown to be mild. The performance improvements offered by the proposed joint bandwidth and power allocation are demonstrated by simulations. The advantages of the suboptimal greedy search algorithm for admission control are also shown.Comment: 30 pages, 5 figures, submitted to IEEE Trans. Signal Processing in June 201

    Transmit Signal and Bandwidth Optimization in Multiple-Antenna Relay Channels

    Full text link
    Transmit signal and bandwidth optimization is considered in multiple-antenna relay channels. Assuming all terminals have channel state information, the cut-set capacity upper bound and decode-and-forward rate under full-duplex relaying are evaluated by formulating them as convex optimization problems. For half-duplex relays, bandwidth allocation and transmit signals are optimized jointly. Moreover, achievable rates based on the compress-and-forward transmission strategy are presented using rate-distortion and Wyner-Ziv compression schemes. It is observed that when the relay is close to the source, decode-and-forward is almost optimal, whereas compress-and-forward achieves good performance when the relay is close to the destination.Comment: 16 pages, 10 figure

    Jointly Optimal Channel and Power Assignment for Dual-Hop Multi-channel Multi-user Relaying

    Full text link
    We consider the problem of jointly optimizing channel pairing, channel-user assignment, and power allocation, to maximize the weighted sum-rate, in a single-relay cooperative system with multiple channels and multiple users. Common relaying strategies are considered, and transmission power constraints are imposed on both individual transmitters and the aggregate over all transmitters. The joint optimization problem naturally leads to a mixed-integer program. Despite the general expectation that such problems are intractable, we construct an efficient algorithm to find an optimal solution, which incurs computational complexity that is polynomial in the number of channels and the number of users. We further demonstrate through numerical experiments that the jointly optimal solution can significantly improve system performance over its suboptimal alternatives.Comment: This is the full version of a paper to appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Cooperative Networking - Challenges and Applications (Part II), October 201

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication
    • …
    corecore