121,589 research outputs found
Potential flow of fluid from an elevated, two-dimensional source
When fluid is pumped from an elevated source it flows downward and then outward once it hits the base. In this paper we consider a simple two dimensional model of flow from a single line source elevated above a horizontal base and consider its downward flow into a spreading layer on the bottom. A hodograph solution and linear solutions are obtained for high flow rates and full nonlinear solutions are obtained over a range of parameter space. It is found that there is a minimum flow rate beneath which no steady solutions exist. Overhanging surfaces are found for a range of parameter values. This flow serves as a model for a two-dimensional water fountain, or approximates a similar flow in a density stratified environment
Post-injection normal closure of fractures as a mechanism for induced seismicity
Understanding the controlling mechanisms underlying injection-induced
seismicity is important for optimizing reservoir productivity and addressing
seismicity-related concerns related to hydraulic stimulation in Enhanced
Geothermal Systems. Hydraulic stimulation enhances permeability through
elevated pressures, which cause normal deformations, and the shear slip of
pre-existing fractures. Previous experiments indicate that fracture deformation
in the normal direction reverses as the pressure decreases, e.g., at the end of
stimulation. We hypothesize that this normal closure of fractures enhances
pressure propagation away from the injection region and significantly increases
the potential for post-injection seismicity. To test this hypothesis, hydraulic
stimulation is modeled by numerically coupling fracture deformation, pressure
diffusion and stress alterations for a synthetic geothermal reservoir in which
the flow and mechanics are strongly affected by a complex three-dimensional
fracture network. The role of the normal closure of fractures is verified by
comparing simulations conducted with and without the normal closure effect
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Preliminary test on modified clays for seawater resistant drilling fluids
The quality of a drilling fluid declines in salt water conditions. An engineered clay (HYPER clay) was developed for geosynthetic clay liners with enhanced resistance to aggressive conditions. This study investigates the potential of this superior clay for drilling fluids applied in salt water conditions. A sodium bentonite was treated with a carboxymethyl cellulose (CMC) polymer following the HYPER clay process method. Preliminary tests were performed to investigate suitability of HYPER clay for seawater resistant drilling fluids. Fluid performance was characterized by its thixotropic behavior, rheological properties (gel strength, yield point and viscosity), swell and bleeding behavior. Drilling fluid performance was analyzed at various polymer dosages and electrolyte concentrations. Polymer treatment improved the gel strength and swelling ability of the fluid, especially in electrolyte solutions. Moreover, filter press tests (API 13B-1, 76% seawater) showed that filtrate loss decreased due to polymer treatment
Starting flow through nozzles with temporally variable exit diameter
Starting flow through a nozzle or orifice typically results in the transient formation of a leading vortex ring and trailing jet. Experiments are conducted to investigate the dynamics of this process in the case of a temporally variable nozzle exit diameter, with the aim of understanding these flows as they occur in Nature and emerging technologies. By kinematically decoupling the source flow from the nozzle motion, comparison across several classes of exit diameter temporal variation is facilitated. Kinematic models of the starting flows are used to accurately predict the fluid circulation produced by the vortex generators, and to emphasize the special role of the nozzle boundary layer in dictating the nature of the global flow patterns. A dimensionless temporal parameter is derived in order to track the vortex formation process for the various classes of nozzle motion. Dynamics of vortex ring disconnection from the source flow are studied in this new dimensionless framework. We show that temporally increasing the nozzle exit diameter as the starting flow develops results in higher-energy vortex ring structures with peak vorticity located further from the axis of symmetry relative to a static nozzle case. In addition, the normalized energy supplied by the vortex generator is increased in this process. We do not observe a delay in the onset of vortex ring disconnection from the trailing jet, as predicted by previous numerical simulations. In contrast, growth of the leading vortex ring is substantially augmented by temporally decreasing the nozzle exit diameter during fluid ejection, as noted in a previous experiment. Normalized vortex ring circulation is increased 35% in these cases, and the normalized energy of the generated vortex rings is equivalent to that of Hill's spherical vortex. These observed effects are explained by considering the measured vorticity distribution and energy of the starting flows. Strategies are suggested to exploit the discovered dynamics for various pulsed-jet applications
Stokes flow analogous to viscous electron current in graphene
Electron transport in two-dimensional conducting materials such as graphene,
with dominant electron-electron interaction, exhibits unusual vortex flow that
leads to a nonlocal current-field relation (negative resistance), distinct from
the classical Ohm's law. The transport behavior of these materials is best
described by low Reynolds number hydrodynamics, where the constitutive
pressure-speed relation is Stoke's law. Here we report evidence of such
vortices observed in a viscous flow of Newtonian fluid in a microfluidic device
consisting of a rectangular cavityanalogous to the electronic system. We
extend our experimental observations to elliptic cavities of different
eccentricities, and validate them by numerically solving bi-harmonic equation
obtained for the viscous flow with no-slip boundary conditions. We verify the
existence of a predicted threshold at which vortices appear. Strikingly, we
find that a two-dimensional theoretical model captures the essential features
of three-dimensional Stokes flow in experiments.Comment: 6 pages, 6 figure
Multiscale modelling of fluid and solute transport in soft tissues and microvessels
This study focuses on the movement of particles and extracellular fluid in soft tissues and microvessels. It analyzes modeling applications in biological and physiological fluids at a range of different length scales: from between a few tens to several hundred nanometers, on the endothelial glycocalyx and its effects on interactions between blood and the vessel wall; to a few micrometers, on movement of blood cells in capillaries and transcapillary exchange; to a few millimetres and centimetres, on extracellular matrix deformation and interstitial fluid movement in soft tissues. Interactions between blood cells and capillary wall are discussed when the sizes of the two are of the same order of magnitude, with the glycocalyx on the endothelial and red cell membranes being considered. Exchange of fluid, solutes, and gases by microvessels are highlighted when capillaries have counter-current arrangements. This anatomical feature exists in a number of tissues and is the key in the renal medulla on the urinary concentrating mechanism. The paper also addresses an important phenomenon on the transport of macromolecules. Concentration polarization of hyaluronan on the synovial lining of joint cavities is presented to demonstrate how the mechanism works in principle and how model predictions agree to experimental observations quantitatively
- …
