20,614 research outputs found

    Decentralized Cooperative Planning for Automated Vehicles with Hierarchical Monte Carlo Tree Search

    Full text link
    Today's automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments

    A Hierarchical Reinforcement Learning Method for Persistent Time-Sensitive Tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training case

    A hierarchical reinforcement learning method for persistent time-sensitive tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training cases
    • …
    corecore