541,294 research outputs found
Analysis of healthy sitting behavior: Interface pressure distribution and subcutaneous tissue oxygenation
Pressure ulcers are a large problem in individuals who use a wheelchair for their mobility and have limited trunk stability and motor function. Because no relation between interface pressure and pressure ulcer development has been established and no clinical threshold for pressure ulcer development can be given, looking at the sitting behavior of nondisabled individuals is important. Nondisabled individuals do not develop pressure ulcers because they continuously shift posture. We analyzed the sitting behavior of 25 nondisabled male subjects by using a combination of interface pressure measurement and subcutaneous tissue oxygenation measurement by means of the Oxygen to See. These subjects shifted posture on average 7.8 +/- 5.2 times an hour. These posture shifts were merely a combination of posture shifts in the frontal and sagittal plane. Subcutaneous oxygen saturation increased on average 2.2% with each posture adjustment, indicating a positive effect of posture shifts on tissue viability. The results of this study can be used as a reference for seating interventions aimed at preventing pressure ulcers. Changing the sitting load at least every 8 minutes is recommended for wheelchair users
Working Posture Evaluation of Clinical Student in Faculty of Dentistry University of Indonesia for the Scaling Task in Sitting Position in a Virtual Environment
Musculoskeletal disorders (MSDs) are global issues in the dental profession. This research evaluated the MSDs risk caused by the sitting working posture of clinical students performing the task of scaling. The evaluation using the virtual environment approach shows risk of MSDs in the students’ upper extremities such as neck, shoulder, and trunk. Further simulation based on the ideal sitting working posture shows that ergonomic scaling could be achieved when the patient sits at a 15° angle. When scaling the 1st and 4th quadrant of the teeth, the 9 o’clock position is used. Hence, the 11 o’clock position is used when scaling the 2nd and 3rd quadrant
Estimates of persistent inward current in human motor neurons during postural sway
Persistent inward current (PIC) is a membrane property critical for increasing gain of motor neuron output. In humans, most estimates of PIC are made from plantarflexor or dorsiflexor motor units with the participant in a seated position with the knee flexed. This seated and static posture neglects the task-dependent nature of the monoaminergic drive that modulates PIC activation. Seated estimates may drastically underestimate the amount of PIC that occurs in human motor neurons during functional movement. The current study estimated PIC using the conventional paired motor unit technique which uses the difference between reference unit firing frequency at test unit recruitment and reference unit firing frequency at test unit de-recruitment (∆F) during triangular-shaped, isometric ramps in plantarflexion force as an estimate of PIC. Estimates of PIC were also made during standing anterior postural sway, a postural task that elicits a ramped increase and decrease in soleus motor unit activation similar to the conventional seated ramp contractions. For each motor unit pair, ∆F estimates of PIC made during conventional isometric ramps in the seated posture were compared to those made during standing postural sway. Baseline reciprocal inhibition (RI) was also measured in each posture using the post-stimulus time histogram (PSTH) technique. Hyperpolarizing input has been shown to have a reciprocal relationship with PIC in seated posture and RI was measured to examine if the same reciprocal relationship holds true during functional PIC estimation. It was hypothesized that an increase in ∆F would be seen during standing compared to sitting due to greater neuromodulatory input. We found that ∆F estimates during standing postural sway were equal (2.44 ± 1.17, p=0.44) to those in seated PIC estimates (2.73± 1.20) using the same motor unit pair. Reciprocal inhibition was significantly lower when measured in a standing posture (0.0031 ± 0.0251,
A Model of Movement Coordinates in Motor Cortex: Posture-Dependent Changes in the Gain and Direction of Single Cell Tuning Curves
Central to the problem of elucidating the cortical mechanisms that mediate movement behavior is an investigation of the coordinate systems by which movement variables are encoded in the firing rates of individual motor cortical neurons. In the last decade, neurophysiologists have probed how the preferred direction of an individual motor cortical cell (as determined by a center-out task) will change with posture because such changes are useful for inferring underlying cordinates. However, while the importance of shifts in preferred direction is well-known and widely accepted, posture-dependent changes in the depth of modulation of a cell's tuning curve, i.e. gain changes, have not been similarly identified as a means of coordinate inference. This paper develops a vector field framework which, by viewing the preferred direction and the gain of a cell's tuning curve as dual components of a unitary response vector, can compute how each aspect of cell response covaries with posture as a function of the coordinate system in which a given cell is hypothesized to encode its movement information. This integrated approach leads to a model of motor cortical cell activity that codifies the following four observations: 1) cell activity correlates with hand movement direction, 2) cell activity correlates with hand movement speed, 3) preferred directions vary with posture, and 4) the modulation depth of tuning curves varies with posture. Finally, the model suggests general methods for testing coordinate hypotheses at the single cell level and example protocols arc simulated for three possible coordinate systems: Cartesian spatial, shoulder-centered, and joint angle.Defense Advanced Research Projects Agency (N00014-92-J-4015); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-90-00530, IRI-97-20333); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-94-l-0940, N00014-95-1-0657)
Renormalization Group Analysis of a Quivering String Model of Posture Control
Scaling concepts and renormalization group (RG) methods are applied to a
simple linear model of human posture control consisting of a trembling or
quivering string subject to damping and restoring forces. The string is driven
by uncorrelated white Gaussian noise intended to model the corrections of the
physiological control system. We find that adding a weak quadratic nonlinearity
to the posture control model opens up a rich and complicated phase space
(representing the dynamics) with various non-trivial fixed points and basins of
attraction. The transition from diffusive to saturated regimes of the linear
model is understood as a crossover phenomenon, and the robustness of the linear
model with respect to weak non-linearities is confirmed. Correlations in
posture fluctuations are obtained in both the time and space domain. There is
an attractive fixed point identified with falling. The scaling of the
correlations in the front-back displacement, which can be measured in the
laboratory, is predicted for both the large-separation (along the string) and
long-time regimes of posture control.Comment: 20 pages, 13 figures, RevTeX, accepted for publication in PR
Functional asymmetry of posture and body system regulation
The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats
Book Review: Yoga Body: The Origins of Modern Posture Practice
A review of Yoga Body: The Origins of Modern Posture Practice by Mark Singleton
Can virtual reality predict body part discomfort and performance of people in realistic world for assembling tasks?
This paper presents our work on relationship of evaluation results between
virtual environment (VE) and realistic environment (RE) for assembling tasks.
Evaluation results consist of subjective results (BPD and RPE) and objective
results (posture and physical performance). Same tasks were performed with same
experimental configurations and evaluation results were measured in RE and VE
respectively. Then these evaluation results were compared. Slight difference of
posture between VE and RE was found but not great difference of effect on
people according to conventional ergonomics posture assessment method.
Correlation of BPD and performance results between VE and RE are found by
linear regression method. Moreover, results of BPD, physical performance, and
RPE in VE are higher than that in RE with significant difference. Furthermore,
these results indicates that subjects feel more discomfort and fatigue in VE
than RE because of additional effort required in VE
Estimation of Human Body Shape and Posture Under Clothing
Estimating the body shape and posture of a dressed human subject in motion
represented as a sequence of (possibly incomplete) 3D meshes is important for
virtual change rooms and security. To solve this problem, statistical shape
spaces encoding human body shape and posture variations are commonly used to
constrain the search space for the shape estimate. In this work, we propose a
novel method that uses a posture-invariant shape space to model body shape
variation combined with a skeleton-based deformation to model posture
variation. Our method can estimate the body shape and posture of both static
scans and motion sequences of dressed human body scans. In case of motion
sequences, our method takes advantage of motion cues to solve for a single body
shape estimate along with a sequence of posture estimates. We apply our
approach to both static scans and motion sequences and demonstrate that using
our method, higher fitting accuracy is achieved than when using a variant of
the popular SCAPE model as statistical model.Comment: 23 pages, 11 figure
- …
