10,549 research outputs found
Momentum Control of Humanoid Robots with Series Elastic Actuators
Humanoid robots may require a degree of compliance at the joint level for
improving efficiency, shock tolerance, and safe interaction with humans. The
presence of joint elasticity, however, complexifies the design of balancing and
walking controllers. This paper proposes a control framework for extending
momentum based controllers developed for stiff actuators to the case of series
elastic actuators. The key point is to consider the motor velocities as an
intermediate control input, and then apply high-gain control to stabilise the
desired motor velocities achieving momentum control. Simulations carried out on
a model of the robot iCub verify the soundness of the proposed approach
Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses
Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies
A review of the effectiveness of lower limb orthoses used in cerebral palsy
To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO
Mechanisms of interpersonal sway synchrony and stability
Here we explain the neural and mechanical mechanisms responsible for synchronizing sway and improving postural control during physical contact with another standing person. Postural control processes were modelled using an inverted pendulum under continuous feedback control. Interpersonal interactions were simulated either by coupling the sensory feedback loops or by physically coupling the pendulums with a damped spring. These simulations precisely recreated the timing and magnitude of sway interactions observed empirically. Effects of firmly grasping another person's shoulder were explained entirely by the mechanical linkage. This contrasted with light touch and/or visual contact, which were explained by a sensory weighting phenomenon; each person's estimate of upright was based on a weighted combination of veridical sensory feedback combined with a small contribution from their partner. Under these circumstances, the model predicted reductions in sway even without the need to distinguish between self and partner motion. Our findings explain the seemingly paradoxical observation that touching a swaying person can improve postural control.This work was supported by two BBSRC grants (BB/100579X/1 and an Industry Interchange Award)
Quantifying Performance of Bipedal Standing with Multi-channel EMG
Spinal cord stimulation has enabled humans with motor complete spinal cord
injury (SCI) to independently stand and recover some lost autonomic function.
Quantifying the quality of bipedal standing under spinal stimulation is
important for spinal rehabilitation therapies and for new strategies that seek
to combine spinal stimulation and rehabilitative robots (such as exoskeletons)
in real time feedback. To study the potential for automated electromyography
(EMG) analysis in SCI, we evaluated the standing quality of paralyzed patients
undergoing electrical spinal cord stimulation using both video and
multi-channel surface EMG recordings during spinal stimulation therapy
sessions. The quality of standing under different stimulation settings was
quantified manually by experienced clinicians. By correlating features of the
recorded EMG activity with the expert evaluations, we show that multi-channel
EMG recording can provide accurate, fast, and robust estimation for the quality
of bipedal standing in spinally stimulated SCI patients. Moreover, our analysis
shows that the total number of EMG channels needed to effectively predict
standing quality can be reduced while maintaining high estimation accuracy,
which provides more flexibility for rehabilitation robotic systems to
incorporate EMG recordings
Recommended from our members
Do Balance Demands Induce Shifts in Visual Proprioception in Crawling Infants?
The onset of hands-and-knees crawling during the latter half of the first year of life heralds pervasive changes in a range of psychological functions. Chief among these changes is a clear shift in visual proprioception, evident in the way infants use patterns of optic flow in the peripheral field of view to regulate their postural sway. This shift is thought to result from consistent exposure in the newly crawling infant to different patterns of optic flow in the central field of view and the periphery and the need to concurrently process information about self-movement, particularly postural sway, and the environmental layout during crawling. Researchers have hypothesized that the demands on the infant's visual system to concurrently process information about self-movement and the environment press the infant to differentiate and functionalize peripheral optic flow for the control of balance during locomotion so that the central field of view is freed to engage in steering and monitoring the surface and potentially other tasks. In the current experiment, we tested whether belly crawling, a mode of locomotion that places negligible demands on the control of balance, leads to the same changes in the functional utilization of peripheral optic flow for the control of postural sway as hands-and-knees crawling. We hypothesized that hands-and-knees crawlers (n = 15) would show significantly higher postural responsiveness to movements of the side walls and ceiling of a moving room than same-aged pre-crawlers (n = 19) and belly crawlers (n = 15) with an equivalent amount of crawling experience. Planned comparisons confirmed the hypothesis. Visual-postural coupling in the hands-and-knees crawlers was significantly higher than in the belly crawlers and pre-crawlers. These findings suggest that the balance demands associated with hands-and-knees crawling may be an important contributor to the changes in visual proprioception that have been demonstrated in several experiments to follow hands-and-knees crawling experience. However, we also consider that belly crawling may have less potent effects on visual proprioception because it is an effortful and attention-demanding mode of locomotion, thus leaving less attentional capacity available to notice changing relations between the self and the environment
A Developmental Organization for Robot Behavior
This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions
of dynamic pattern theory in which behavior
is an artifact of coupled dynamical systems
with a number of controllable degrees of freedom. In our model, the events that delineate
control decisions are derived from the pattern
of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential
knowledge gathering and representation tasks
and provide examples of the kind of developmental milestones that this approach has
already produced in our lab
Automatic Gain Tuning of a Momentum Based Balancing Controller for Humanoid Robots
This paper proposes a technique for automatic gain tuning of a momentum based
balancing controller for humanoid robots. The controller ensures the
stabilization of the centroidal dynamics and the associated zero dynamics.
Then, the closed-loop, constrained joint space dynamics is linearized and the
controller's gains are chosen so as to obtain desired properties of the
linearized system. Symmetry and positive definiteness constraints of gain
matrices are enforced by proposing a tracker for symmetric positive definite
matrices. Simulation results are carried out on the humanoid robot iCub.Comment: Accepted at IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS). 201
- …
