2 research outputs found

    An overview of memristive cryptography

    Full text link
    Smaller, smarter and faster edge devices in the Internet of things era demands secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras, and wearables. In this article, the current state of memristive cryptography is placed in the context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.Comment: European Physical Journal: Special Topics, Special Issue on "Memristor-based systems: Nonlinearity, dynamics and applicatio

    Post-Quantum Linkable Ring Signature Enabling Distributed Authorised Ring Confidential Transactions in Blockchain

    Get PDF
    When electronic wallets are transferred by more than one party, the level of security can be enhanced by decentralising the distribution of authorisation amongst those parties. Threshold signature schemes enable this functionality by allowing multiple cosigners to cooperate in order to create a joint signature. These cosigners interact to sign a transaction which then confirms that a wallet has been transferred. However, in the event of a post-quantum attack, existing threshold signature schemes that support such an authorisation technique in privacy-preserving cryptocurrency protocols - like Ring Confidential Transaction (RingCT) - would not provide adequate security. In this paper, we present a new post-quantum cryptographic mechanism, called Lattice-based Linkable Ring Signature with Co-Signing (L2RS-CS), which offers a distributed authorisation feature to protect electronic wallets. A novel security model for L2RS-CS is also formalised to capture the security and privacy requirements to protect transactions in applications to blockchain cryptocurrency protocols, such as the RingCT. To address key-generation security concerns, and to support compression of keys and signatures, the L2RS-CS incorporates a distributed key generation along with a solid public-key aggregation. Finally, we prove the security of our constructed L2RS-CS in the random oracle model and the standard lattice-based Module-SIS hardness assumption
    corecore