52,159 research outputs found
Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval
Death is likely to result in very extensive biochemical changes in all body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. These biochemical changes may provide chemical markers for helping to more accurately determine the time since death (post-mortem interval), which is challenging to establish with current observation-based methodologies. In this study blood pH and changes in concentration of six metabolites (lactic acid, hypoxanthine, uric acid, ammonia, NADH and formic acid) were examined post-mortem over a 96 hour period in blood taken from animal corpses (rat and pig) and blood from rats and humans stored in vitro. The pH and the concentration of all six metabolites changed post-mortem but the extent and rate of change varied. Blood pH in corpses fell from 7.4 to 5.1. Concentrations of hypoxanthine, ammonia, NADH and formic acid all increased with time and these metabolites may be potential markers for postmortem interval. The concentration of lactate increased and then remained at an elevated level and changes in the concentration were different in the rat compared to the human and pig. This is the first systematic study of multiple metabolic changes post-mortem and demonstrates the nature and extent of the changes that occur, in addition to identifying potential markers for estimating post-mortem interval
The effects of death and post-mortem cold ischemia on human tissue transcriptomes
Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.Peer ReviewedPostprint (published version
The application of amino acid racemization in the acid soluble fraction of enamel to the estimation of the age of human teeth
Estimation of age-at-death for skeletonised forensic remains is one of the most significant problems in forensic anthropology. The majority of existing morphological and histological techniques are highly inaccurate, and show a bias towards underestimating the age of older individuals. One technique which has been successful in forensic age estimation is amino acid racemization in dentine. However, this method cannot be used on remains where the post-mortem interval is greater than 20 years. An alternative approach is to measure amino acid racemization in dental enamel, which is believed to be more resistant to change post-mortem. The extent of amino acid racemization in the acid soluble fraction of the enamel proteins was determined for modem known age teeth. A strong correlation was observed between the age of the tooth and the extent of racemization. No systematic bias in the direction of age estimation errors was detected. For the majority of teeth analyzed, the presence of dental caries did not affect the results obtained. In a minority of cases, carious teeth showed a higher level of racemization than would be expected given the age of the individual. These results indicate that amino acid racemization in enamel has the potential to be used in age estimation of skeletal remains. (C) 2007 Elsevier Ireland Ltd. All rights reserved
Preliminary soilwater conductivity analysis to date clandestine burials of homicide victims
This study reports on a new geoscientific method to estimate the post-burial interval (PBI) and potential post-mortem interval (PMI) date of homicide victims in clandestine graves by measuring decomposition fluid conductivities. Establishing PBI/PMI dates may be critical for forensic investigators to establish time-lines to link or indeed rule out suspects to a crime. Regular in situ soilwater analysis from a simulated clandestine grave (which contained a domestic buried pig carcass) in a semi-rural environment had significantly elevated conductivity measurements when compared to background values. A temporal rapid increase of the conductivity of burial fluids was observed until one-year post-burial, after this values slowly increased until two years (end of the current study period). Conversion of x-axis from post-burial days to 'accumulated degree days' (ADDs) corrected for both local temperature variations and associated depth of burial and resulted in an improved fit for multiple linear regression analyses. ADD correction also allowed comparison with a previous conductivity grave study on a different site with a different soil type and environment; this showed comparable results with a similar trend observed. A separate simulated discovered burial had a conductivity estimated PBI date that showed 12% error from its actual burial date. Research is also applicable in examining illegal animal burials; time of burial and waste deposition. Further research is required to extend the monitoring period, to use human cadavers and to repeat this with other soil types and depositional environments
Post mortem interval estimation: features of сerebrospinaI fluid films autofluoresсent laser polarimetry
Тhe purpose of the work is development and testing of the two-dimensional Stokes-polarimetriс mapping оf biologiсal layers own fluoresсenсe to evaluаte ассuraсy of the post moгtem interval estimation using stаtistical analysis of post moгtem changes dynamiсs of the сoordinate distributions values of polyсrystalline films of liquor images laser-induсed fluoresсenсe polarisаtion intensity
Quantification of Maceration Changes using Post Mortem MRI in Fetuses
BACKGROUND: Post mortem imaging is playing an increasingly important role in perinatal autopsy, and correct interpretation of imaging changes is paramount. This is particularly important following intra-uterine fetal death, where there may be fetal maceration. The aim of this study was to investigate whether any changes seen on a whole body fetal post mortem magnetic resonance imaging (PMMR) correspond to maceration at conventional autopsy. METHODS: We performed pre-autopsy PMMR in 75 fetuses using a 1.5 Tesla Siemens Avanto MR scanner (Erlangen, Germany). PMMR images were reported blinded to the clinical history and autopsy data using a numerical severity scale (0 = no maceration changes to 2 = severe maceration changes) for 6 different visceral organs (total 12). The degree of maceration at autopsy was categorized according to severity on a numerical scale (1 = no maceration to 4 = severe maceration). We also generated quantitative maps to measure the liver and lung T2. RESULTS: The mean PMMR maceration score correlated well with the autopsy maceration score (R(2) = 0.93). A PMMR score of ≥4.5 had a sensitivity of 91%, specificity of 64%, for detecting moderate or severe maceration at autopsy. Liver and lung T2 were increased in fetuses with maceration scores of 3-4 in comparison to those with 1-2 (liver p = 0.03, lung p = 0.02). CONCLUSIONS: There was a good correlation between PMMR maceration score and the extent of maceration seen at conventional autopsy. This score may be useful in interpretation of fetal PMMR
Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT)
Purpose: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism. Material and methods: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs, and body spaces (82 total sites). Results: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8-70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%), right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 hours after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho = 0.719, p < 0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in periumbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction. Conclusion: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post-mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolis
Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT)
L'imagerie est de plus en plus utilisée en médecine forensique. Actuellement, les connaissances nécessaires pour interpréter les images post mortem sont faibles et surtout celles concernant les artéfacts post mortem. Le moyen radiologique le plus utilisé en médecine légale est la tomodensitométrie multi-coupes (TDMC). Un de ses avantages est la détection de gaz dans le corps. Cette technique est utile au diagnostic d'embolie gazeuse mais sa très grande sensibilité rend visible du gaz présent même en petite quantité. Les premières expériences montrent que presque tous les corps scannés présentent du gaz surtout dans le système vasculaire. Pour cette raison, le médecin légiste est confronté à un nouveau problème : la distinction entre du gaz d'origine post-mortem et une embolie gazeuse vraie. Pour parvenir à cette distinction, il est essentiel d'étudier la distribution de ces gaz en post mortem. Aucune étude systématique n'a encore été réalisée à ce jour sur ce sujet.¦Nous avons étudié l'incidence et la distribution des gaz présents en post mortem dans les vaisseaux, dans les os, dans les tissus sous-cutanés, dans l'espace sous-dural ainsi que dans les cavités crânienne, thoracique et abdominale (82 sites au total) de manière à identifier les facteurs qui pourraient distinguer le gaz post-mortem artéfactuel d'une embolie gazeuse¦Les données TDMC de 119 cadavres ont été étudiées rétrospectivement. Les critères d'inclusion des sujets sont l'absence de lésion corporelle permettant la contamination avec l'air extérieur, et, la documentation du délai entre le moment du décès et celui du CT-scan (p.ex. rapport de police, protocole de réanimation ou témoin). La présence de gaz a été évaluée semi-quantitativement par deux radiologues et codifiée. La codification est la suivante : grade 0 = pas de gaz, grade 1 = une à quelques bulles d'air, grade 2 = structure partiellement remplie d'air, grade 3 = structure complètement remplie d'air.¦Soixante-quatre des 119 cadavres présentent du gaz (62,2%), et 56 (75,7%) ont montré du gaz dans le coeur. Du gaz a été détecté le plus fréquemment dans le parenchyme hépatique (40%); le coeur droit (ventricule 38%, atrium 35%), la veine cave inférieure (infra-rénale 30%, supra-rénale 26%), les veines sus-hépatiques (gauche 26%, moyenne 29%, droite 22 %), et les espaces du porte (29%). Nous avons constaté qu'une grande quantité de gaz liée à la putréfaction présente dans le coeur droit (grade 3) est associée à des collections de gaz dans le parenchyme hépatique (sensibilité = 100%, spécificité = 89,7%). Pour décrire nos résultats, nous avons construit une séquence d'animation qui illustre le processus de putréfaction et l'apparition des gaz à la TDMC post-mortem.¦Cette étude est la première à montrer que l'apparition post-mortem des gaz suit un modèle de distribution spécifique. L'association entre la présence de gaz intracardiaque et dans le parenchyme hépatique pourrait permettre de distinguer du gaz artéfactuel d'origine post-mortem d'une embolie gazeuse vraie. Cette étude fournit une clé pour le diagnostic de la mort due à une embolie gazeuse cardiaque sur la base d'une TDMC post-mortem.¦Abstract¦Purpose: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism.¦Material and Methods: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs and body spaces (82 total sites).¦Results: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8 to 70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%); right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 h after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho=0.719, p<0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in peri-umbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction.¦Conclusion: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post- mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolism
- …
