1,888 research outputs found

    Bolt: Accelerated Data Mining with Fast Vector Compression

    Full text link
    Vectors of data are at the heart of machine learning and data mining. Recently, vector quantization methods have shown great promise in reducing both the time and space costs of operating on vectors. We introduce a vector quantization algorithm that can compress vectors over 12x faster than existing techniques while also accelerating approximate vector operations such as distance and dot product computations by up to 10x. Because it can encode over 2GB of vectors per second, it makes vector quantization cheap enough to employ in many more circumstances. For example, using our technique to compute approximate dot products in a nested loop can multiply matrices faster than a state-of-the-art BLAS implementation, even when our algorithm must first compress the matrices. In addition to showing the above speedups, we demonstrate that our approach can accelerate nearest neighbor search and maximum inner product search by over 100x compared to floating point operations and up to 10x compared to other vector quantization methods. Our approximate Euclidean distance and dot product computations are not only faster than those of related algorithms with slower encodings, but also faster than Hamming distance computations, which have direct hardware support on the tested platforms. We also assess the errors of our algorithm's approximate distances and dot products, and find that it is competitive with existing, slower vector quantization algorithms.Comment: Research track paper at KDD 201

    Efficient end-to-end learning for quantizable representations

    Full text link
    Embedding representation learning via neural networks is at the core foundation of modern similarity based search. While much effort has been put in developing algorithms for learning binary hamming code representations for search efficiency, this still requires a linear scan of the entire dataset per each query and trades off the search accuracy through binarization. To this end, we consider the problem of directly learning a quantizable embedding representation and the sparse binary hash code end-to-end which can be used to construct an efficient hash table not only providing significant search reduction in the number of data but also achieving the state of the art search accuracy outperforming previous state of the art deep metric learning methods. We also show that finding the optimal sparse binary hash code in a mini-batch can be computed exactly in polynomial time by solving a minimum cost flow problem. Our results on Cifar-100 and on ImageNet datasets show the state of the art search accuracy in precision@k and NMI metrics while providing up to 98X and 478X search speedup respectively over exhaustive linear search. The source code is available at https://github.com/maestrojeong/Deep-Hash-Table-ICML18Comment: Accepted and to appear at ICML 2018. Camera ready versio
    • …
    corecore