209 research outputs found

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified
    corecore