17 research outputs found

    Euclidean versus hyperbolic congestion in idealized versus experimental networks

    Full text link
    This paper proposes a mathematical justification of the phenomenon of extreme congestion at a very limited number of nodes in very large networks. It is argued that this phenomenon occurs as a combination of the negative curvature property of the network together with minimum length routing. More specifically, it is shown that, in a large n-dimensional hyperbolic ball B of radius R viewed as a roughly similar model of a Gromov hyperbolic network, the proportion of traffic paths transiting through a small ball near the center is independent of the radius R whereas, in a Euclidean ball, the same proportion scales as 1/R^{n-1}. This discrepancy persists for the traffic load, which at the center of the hyperbolic ball scales as the square of the volume, whereas the same traffic load scales as the volume to the power (n+1)/n in the Euclidean ball. This provides a theoretical justification of the experimental exponent discrepancy observed by Narayan and Saniee between traffic loads in Gromov-hyperbolic networks from the Rocketfuel data base and synthetic Euclidean lattice networks. It is further conjectured that for networks that do not enjoy the obvious symmetry of hyperbolic and Euclidean balls, the point of maximum traffic is near the center of mass of the network.Comment: 23 pages, 4 figure

    Hyperbolic polyhedral surfaces with regular faces

    Full text link
    We study hyperbolic polyhedral surfaces with faces isometric to regular hyperbolic polygons satisfying that the total angles at vertices are at least 2Ï€.2\pi. The combinatorial information of these surfaces is shown to be identified with that of Euclidean polyhedral surfaces with negative combinatorial curvature everywhere. We prove that there is a gap between areas of non-smooth hyperbolic polyhedral surfaces and the area of smooth hyperbolic surfaces. The numerical result for the gap is obtained for hyperbolic polyhedral surfaces, homeomorphic to the double torus, whose 1-skeletons are cubic graphs.Comment: 23 pages, 3 figures. arXiv admin note: text overlap with arXiv:1804.1103
    corecore