1,341 research outputs found

    Positive recurrence of reflecting Brownian motion in three dimensions

    Full text link
    Consider a semimartingale reflecting Brownian motion (SRBM) ZZ whose state space is the dd-dimensional nonnegative orthant. The data for such a process are a drift vector θ\theta, a nonsingular d×dd\times d covariance matrix Σ\Sigma, and a d×dd\times d reflection matrix RR that specifies the boundary behavior of ZZ. We say that ZZ is positive recurrent, or stable, if the expected time to hit an arbitrary open neighborhood of the origin is finite for every starting state. In dimension d=2d=2, necessary and sufficient conditions for stability are known, but fundamentally new phenomena arise in higher dimensions. Building on prior work by El Kharroubi, Ben Tahar and Yaacoubi [Stochastics Stochastics Rep. 68 (2000) 229--253, Math. Methods Oper. Res. 56 (2002) 243--258], we provide necessary and sufficient conditions for stability of SRBMs in three dimensions; to verify or refute these conditions is a simple computational task. As a byproduct, we find that the fluid-based criterion of Dupuis and Williams [Ann. Probab. 22 (1994) 680--702] is not only sufficient but also necessary for stability of SRBMs in three dimensions. That is, an SRBM in three dimensions is positive recurrent if and only if every path of the associated fluid model is attracted to the origin. The problem of recurrence classification for SRBMs in four and higher dimensions remains open.Comment: Published in at http://dx.doi.org/10.1214/09-AAP631 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Brownian motion.

    Full text link
    Thesis (M.A.)--Boston Universit

    Tutte's invariant approach for Brownian motion reflected in the quadrant

    Get PDF
    We consider a Brownian motion with drift in the quarter plane with orthogonal reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant walks. We develop a Tutte's invariant approach to this continuous setting, and we obtain an explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.Comment: 14 pages, 3 figure
    • …
    corecore