61,334 research outputs found

    Exact relativistic treatment of stationary counter-rotating dust disks I: Boundary value problems and solutions

    Full text link
    This is the first in a series of papers on the construction of explicit solutions to the stationary axisymmetric Einstein equations which describe counter-rotating disks of dust. These disks can serve as models for certain galaxies and accretion disks in astrophysics. We review the Newtonian theory for disks using Riemann-Hilbert methods which can be extended to some extent to the relativistic case where they lead to modular functions on Riemann surfaces. In the case of compact surfaces these are Korotkin's finite gap solutions which we will discuss in this paper. On the axis we establish for general genus relations between the metric functions and hence the multipoles which are enforced by the underlying hyperelliptic Riemann surface. Generalizing these results to the whole spacetime we are able in principle to study the classes of boundary value problems which can be solved on a given Riemann surface. We investigate the cases of genus 1 and 2 of the Riemann surface in detail and construct the explicit solution for a family of disks with constant angular velocity and constant relative energy density which was announced in a previous Physical Review Letter.Comment: 32 pages, 1 figure, to appear in Phys. Rev.

    Gravity on codimension 2 brane worlds

    Full text link
    We compute the matching conditions for a general thick codimension 2 brane, a necessary previous step towards the investigation of gravitational phenomena in codimension 2 braneworlds. We show that, provided the brane is weakly curved, they are specified by the integral in the extra dimensions of the brane energy-momentum, independently of its detailed internal structure. These general matching conditions can then be used as boundary conditions for the bulk solution. By evaluating Einstein equations at the brane boundary we are able to write an evolution equation for the induced metric on the brane depending only on physical brane parameters and the bulk energy-momentum tensor. We particularise to a cosmological metric and show that a realistic cosmology can be obtained in the simplest case of having just a non-zero cosmological constant in the bulk. We point out several parallelisms between this case and the codimension 1 brane worlds in an AdS space.Comment: 24 page

    On the solvability of third-order three point systems of differential equations with dependence on the first derivative

    Full text link
    This paper presents sufficient conditions for the solvability of the third order three point boundary value problem \begin{equation*} \left\{ \begin{array}{c} -u^{\prime \prime \prime }(t)=f(t,\,v(t),\,v^{\prime }(t)) \\ -v^{\prime \prime \prime }(t)=h(t,\,u(t),\,u^{\prime }(t)) \\ u(0)=u^{\prime }(0)=0,u^{\prime }(1)=\alpha u^{\prime }(\eta ) \\ v(0)=v^{\prime }(0)=0,v^{\prime }(1)=\alpha v^{\prime }(\eta ). \end{array} \right. \end{equation*} The arguments apply Green's function associated to the linear problem and the Guo--Krasnosel'ski\u{\i} theorem of compression-expansion cones. The dependence on the first derivatives is overcome by the construction of an adequate cone and suitable conditions of superlinearity/sublinearity near 00 and +.+\infty . Last section contains an example to illustrate the applicability of the theorem.Comment: 21 page

    The Unified Method: I Non-Linearizable Problems on the Half-Line

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large kk asymptotics of the eigenfunctions defining the relevant spectral functions.Comment: 39 page
    corecore