28,162 research outputs found

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1−ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1

    Maximizing the Diversity of Exposure in a Social Network

    Full text link
    Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed to sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper, we take a step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We formulate the problem in the context of information propagation, as a task of recommending a small number of news articles to selected users. We propose a realistic setting where we take into account content and user leanings, and the probability of further sharing an article. This setting allows us to capture the balance between maximizing the spread of information and ensuring the exposure of users to diverse viewpoints. The resulting problem can be cast as maximizing a monotone and submodular function subject to a matroid constraint on the allocation of articles to users. It is a challenging generalization of the influence maximization problem. Yet, we are able to devise scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets. We experimentally demonstrate the efficiency and scalability of our algorithm on several real-world datasets

    Fast Detection of Community Structures using Graph Traversal in Social Networks

    Full text link
    Finding community structures in social networks is considered to be a challenging task as many of the proposed algorithms are computationally expensive and does not scale well for large graphs. Most of the community detection algorithms proposed till date are unsuitable for applications that would require detection of communities in real-time, especially for massive networks. The Louvain method, which uses modularity maximization to detect clusters, is usually considered to be one of the fastest community detection algorithms even without any provable bound on its running time. We propose a novel graph traversal-based community detection framework, which not only runs faster than the Louvain method but also generates clusters of better quality for most of the benchmark datasets. We show that our algorithms run in O(|V | + |E|) time to create an initial cover before using modularity maximization to get the final cover. Keywords - community detection; Influenced Neighbor Score; brokers; community nodes; communitiesComment: 29 pages, 9 tables, and 13 figures. Accepted in "Knowledge and Information Systems", 201

    How to Influence People with Partial Incentives

    Get PDF
    We study the power of fractional allocations of resources to maximize influence in a network. This work extends in a natural way the well-studied model by Kempe, Kleinberg, and Tardos (2003), where a designer selects a (small) seed set of nodes in a social network to influence directly, this influence cascades when other nodes reach certain thresholds of neighbor influence, and the goal is to maximize the final number of influenced nodes. Despite extensive study from both practical and theoretical viewpoints, this model limits the designer to a binary choice for each node, with no way to apply intermediate levels of influence. This model captures some settings precisely, e.g. exposure to an idea or pathogen, but it fails to capture very relevant concerns in others, for example, a manufacturer promoting a new product by distributing five "20% off" coupons instead of giving away one free product. While fractional versions of problems tend to be easier to solve than integral versions, for influence maximization, we show that the two versions have essentially the same computational complexity. On the other hand, the two versions can have vastly different solutions: the added flexibility of fractional allocation can lead to significantly improved influence. Our main theoretical contribution is to show how to adapt the major positive results from the integral case to the fractional case. Specifically, Mossel and Roch (2006) used the submodularity of influence to obtain their integral results; we introduce a new notion of continuous submodularity, and use this to obtain matching fractional results. We conclude that we can achieve the same greedy (1−1/e−ϵ)(1-1/e-\epsilon)-approximation for the fractional case as the integral case. In practice, we find that the fractional model performs substantially better than the integral model, according to simulations on real-world social network data
    • …
    corecore