6 research outputs found

    Positive Cosmological Constant and Quantum Theory

    Full text link
    We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS) algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs) of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli).Comment: 44 pages, Latex, no figures. A revised version published in Symmetry, Special Issue: Quantum Symmetr

    A New Look at the Position Operator in Quantum Theory

    Full text link
    The postulate that coordinate and momentum representations are related to each other by the Fourier transform has been accepted from the beginning of quantum theory by analogy with classical electrodynamics. As a consequence, an inevitable effect in standard theory is the wave packet spreading (WPS) of the photon coordinate wave function in directions perpendicular to the photon momentum. This leads to several paradoxes. The most striking of them is that coordinate wave functions of photons emitted by stars have cosmic sizes and strong arguments indicate that this contradicts observational data. We argue that the above postulate is based neither on strong theoretical arguments nor on experimental data and propose a new consistent definition of the position operator. Then WPS in directions perpendicular to the particle momentum is absent and the paradoxes are resolved. Different components of the new position operator do not commute with each other and, as a consequence, there is no wave function in coordinate representation. Implications of the results for entanglement, quantum locality and the problem of time in quantum theory are discussed.Comment: 68 pages. A version published in Physics of Particles and Nuclei has been considerably revised in view of our discussions with Anatoly Kamchatnov and his constructive criticis

    Symmetries in Foundation of Quantum Theory and Mathematics

    Full text link
    In standard quantum theory, symmetry is defined in the spirit of Klein's Erlangen Program: the background space has a symmetry group, and the basic operators should commute according to the Lie algebra of that group. We argue that the definition should be the opposite: background space has a direct physical meaning only on classical level while on quantum level symmetry should be defined by a Lie algebra of basic operators. Then the fact that de Sitter symmetry is more general than Poincare one can be proved mathematically. The problem of explaining cosmological acceleration is very difficult but, as follows from our results, there exists a scenario that the phenomenon of cosmological acceleration can be explained proceeding from basic principles of quantum theory. The explanation has nothing to do with existence or nonexistence of dark energy and therefore the cosmological constant problem and the dark energy problem do not arise. We consider finite quantum theory (FQT) where states are elements of a space over a finite ring or field with characteristic pp and operators of physical quantities act in this space. We prove that, with the same approach to symmetry, FQT and finite mathematics are more general than standard quantum theory and classical mathematics, respectively: the latter theories are special degenerated cases of the former ones in the formal limit p→∞p\to\infty.Comment: 32 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1905.02788, arXiv:1104.464

    Finite Mathematics, Finite Quantum Theory and Applications to Gravity and Particle Theory

    Get PDF
    We argue that the main reason of crisis in quantum theory is that nature, which is fundamentally discrete and even finite, is described by classical mathematics involving the notions of infinitely small, continuity etc. Moreover, since classical mathematics has its own foundational problems which cannot be resolved (as follows, in particular , from Gödel's incompleteness theorems), the ultimate physical theory cannot be based on that mathematics. In the first part of the work we discuss inconsistencies in standard quantum theory and reformulate the theory such that it can be naturally generalized to a formulation based on finite mathematics. It is shown that: a) as a consequence of inconsistent definition of standard position operator, predictions of the theory contradict the data on observations of stars; b) the cosmological acceleration and gravity can be treated simply as kinematical manifestations of quantum de Sitter symmetry, i.e. the cosmological constant problem does not exist, and for describing those phenomena the notions of dark energy, space-time background and gravitational interaction are not needed. In the second part we first prove that classical mathematics is a special degenerate case of finite mathematics in the formal limit when the characteristic p of the field or ring in the latter goes to infinity. This result fundamentally changes the standard paradigm on what mathematics and what physics are the most fundamental. Then we consider a quantum theory based on finite mathematics with a large p. In this approach the de Sitter gravitational constant depends on p and disappears in the formal limit p → ∞, i.e. gravity is a consequence of finiteness of nature. The application to particle theory gives that the notion of a particle and its antiparticle is only approximate and, as a consequence: a) the electric charge and the baryon and lepton quantum numbers can be only approximately conserved; b) particles which in standard theory are treated as neutral (i.e. coinciding with their antiparticles) cannot be elementary. We argue that only Dirac singletons can be true elementary particles and the main reasons are: a) massless and massive particles can be constructed from singletons; b) while irreducible representations describing massless and massive particles are necessarily over a field, irreducible representations describing singletons can be constructed over a ring. Finally we discuss a conjecture that classical time t manifests itself as a consequence of the fact that p changes, i.e. p and not t is the true evolution parameter
    corecore