59 research outputs found

    Kaiten dendoki no enkodaresu kakudo suiteiho

    Get PDF

    Sensorless Rotor Position Estimation For Brushless DC Motors

    Get PDF
    Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand. Among the sensorless approaches, Back-EMF measurement and high frequency signal injection is the most common. Back-EMF is an electromotive force, directly proportional to the speed of rotor revolutions per second, the greater the speed motor acquires the greater the Back-EMF amplitude appears against the motion of rotation. However, the detected Back-EMF is zero at start-up and does not provide motor speed information at this instant. There-fore, Back-EMF based techniques are highly unfavourable for low speed application specially near zero. On the other hand, signal injection techniques are comparatively developed for low or near zero motor speed applications and they also can estimate the on-line motor parameters exploiting the identification theory on phase voltages and currents signals. The signal injection approach requires expensive additional hardware to inject high frequency signal. Since, motors are typically driven with pulse width modulation techniques, high frequency signals are naturally already present which can be used to detect position. This thesis presents rotor position estimation by measuring the voltage and current signals and also proposes an equivalent permanent-magnet synchronous motor model by fitting thedata to a position dependent circuit model

    On-line Temperature Monitoring of Permanent Magnet Synchronous Machines

    Get PDF

    Design optimization and performance analysis methodology for PMSMs to improve efficiency in hydraulic applications

    Get PDF
    Pla de Doctorats Industrials de la Generalitat de CatalunyaIn the recent years, water pumping and other hydraulic applications are increasingly demanding motors capable to operate under different working conditions, including variable pressure and volumetric flow demands. Moreover, the technical evolution trend of pumping components is to minimize the size, offering compact and adaptable hydraulic units. Hence, the need to optimize the electric motor part to reduce the volume according this trend, maximizing the efficiency, decreasing material and fabrication costs, reducing noise and improving thermal dissipation have originated the research field of this project. So far different methodologies have been focused on designing electrical machines considering few aspects, such as the rated conditions with some size limitations. In addition, the optimization strategies have been based on single operation conditions, improving multiple aspects but not considering the overall performance of the machine and its influence with the working system. This research changes the design and optimization paradigm, focusing on defining beforehand the desired performance of the electrical machine in relation with the application system. The customization is not limited to an operating point but to the whole performance space, which in this case is the torque-speed area. Thus, the designer has plenty of freedom to study the system, and define the desired motor performance establishing the size, thermal and mechanical limitations from the beginning of the process. Moreover, when designing and optimizing electrical machines, the experimental validation is of major importance. From an industrial scope so far, the testing methodologies are focused on evaluating point by point the electrical machine performance, being a robust and trustable way to measure and validate the electrical machine characteristics. Nevertheless,this method requires a large time to prepare the experimental setup and to evaluate the whole motor performance. For this reason, there is a special interest on improving parameter estimation and performance evaluation techniques for electrical machines to reduce evaluation time, setup complexity and increase the number of physical magnitudes to measure in order to have deeper information. This research also develops methodologies to extend the electrical machine experimental validation providing information to evaluate the motor performance. This doctoral thesis has been developed with a collaboration agreement between UPC and the company MIDTAL TALENTOS S.L. The thesis is included within the Industrial Doctorates program 2018 DI 019 promoted by the Generalitat de Catalunya.En los últimos años, el bombeo de agua, entre otras aplicaciones hidráulicas, exige cada vez más motores capaces de operar en diferentes condiciones de trabajo, incluyendo las demandas variables de presión y caudal volumétrico. Además, la evolución técnica de los componentes de bombeo está cada vez más minimizando el tamaño ofreciendo unidades hidráulicas compactas y adaptables. De ahí la necesidad de optimizar la parte del motor eléctrico para reducir el volumen de acuerdo con esta tendencia, maximizando la eficiencia, disminuyendo los costos de material y fabricación, reduciendo el ruido y mejorando la disipación térmica. Todos estos factores han creado el campo de investigación sobre el cual se desarrolla este proyecto. Hasta ahora las metodologías se han centrado en diseñar las máquinas eléctricas considerando unos pocos aspectos técnicos, como las condiciones nominales con algunas limitaciones de tamaño. Además, las estrategias de optimización se han basado en condiciones de operación única, mejorando múltiples aspectos sin considerar el rendimiento general de la máquina y su influencia en el sistema de trabajo. Esta investigación cambia el paradigma de diseño y optimización centrándose en definir de antemano el rendimiento deseado de la máquina eléctrica en relación con el sistema de aplicación. La personalización no se limita a un punto de funcionamiento sino a todo el espacio de operación, que en este caso se expresa en el espacio par-velocidad. Así, el diseñador tiene libertad para estudiar el sistema, definir el rendimiento deseado del motor estableciendo el tamaño, limitaciones térmicas y mecánicas desde el inicio del proceso. Además, a la hora de diseñar y optimizar máquinas eléctricas, la validación experimental es de gran importancia. En el ámbito industrial hasta ahora, las metodologías de ensayo han sido enfocadas a evaluar punto por punto la máquina eléctrica, siendo una forma robusta y confiable de medir y validar sus características. Sin embargo, este método requiere mucho tiempo para preparar la configuración experimental y evaluar el motor en toda su zona de operación. Por esta razón, existe un interés especial en mejorar la estimación de parámetros y las técnicas de evaluación de la operación de las máquinas eléctricas reduciendo tiempo, complejidad y aumentando el número de magnitudes físicas a medir teniendo más información sobre la máquina. Esta investigación también desarrolla metodologías para extender la validación experimental de la máquina eléctrica proporcionando información para evaluar el rendimiento del motor. Esta tesis doctoral ha sido desarrollada con un convenio de colaboración entre la Universidad Politécnica de Cataluña UPC y la empresa MIDTAL TALENTOS S.L. La tesis se engloba dentro del plan de Doctorados Industriales 2018 DI 019 impulsado por la Generalitat de Catalunya.Postprint (published version

    Motor control in aerospace, optimizing availability and acoustics

    Get PDF
    The objective of this research project was to investigate motor control methods applied to Permanent Magnet Synchronous Motors (PMSMs) for aerospace applications. In specific this research attempted to address two key issues that are critical in aerospace. Firstly the increase in system availability in case of a resolver failure by means of applying sensorless motor control methods. Secondly the reduction of acoustic noise generated from a motor drive. Reliability, availability and acoustics are key areas in a number of industries especially aerospace. With regards to the reliability and availability objective, a hybrid model/saliency based sensorless method was investigated that can take over motor control in case of a resolver failure. With regards to the objective on acoustics, the research attempted firstly to address the problem of acoustic noise from High Frequency Injection (HFI). A variant of the Pseudo Random High Frequency Injection (PRHFI) algorithm was thus developed aiming to reduce the perception of acoustic noise. While investigating HFI sensorless methods and observing their acoustic effects, the most novel contribution of this research was conceived. The concept of Active Noise Cancellation/Control (ANC) by means of High Frequency Injection (HFI) was thus created, implemented and presented in this thesis. The proposed availability and acoustic improvement algorithms were first simulated in Matlab/Modelsim and then tested on the Helicopter Electro-Mechanical Actuation System (HEMAS). The above hardware platform is a PMSM based drive used to control the swash-plate onboard a helicopter. The reliability enhancement sensorless observer was demonstrated successfully during testing and was shown to track the motor’s speed and angle. The acoustic suppression algorithms (Pseudo Random High Frequency Injection and High Frequency Injection Active Noise Cancellation) were also demonstrated successfully on the hardware platform by means of audio capturing using microphones and analysis within Matlab

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    Self-Commissioning of AC Motor Drives

    Get PDF
    In modern motion control and power conversion applications, the use of inverter-fed electrical machines is fast growing with continuous development in the field of power electronics and drives. The Variable Voltage Variable Frequency (VVVF) supply for electrical machines gives superior performance in terms of speed control, efficiency and dynamics compared to the machines operated directly from the mains. In one of the most basic configurations, a drive system consists of a closed loop speed control that has a current controller inside the loop. For effective and stable current control, the controller gains need to be set according to the parameters of the machine at hand. Besides, accurate parameter information is helpful in ensuring better machine exploitation as well as maintaining higher efficiency in various operating modes and conditions. The traditional methods of determining machine parameters consist of extensive machine testing under prescribed supply and ambient conditions. These methods become impracticable when the machine cannot be isolated from its load or the test equipment cannot be made available. Under such conditions, the alternatives are needed that use only the available hardware included in a standard drive to completely define the machine parameters. Self-commissioning thus comes into play in such situations. The automatic determination of machine electrical parameters before the drive is put in continuous operation is called self-commissioning of the drive system. In this thesis, self-commissioning of AC electric motors is studied, analyzed and results are presented for the implementation of different self-commissioning methods either proposed in the literature or developed in the course of this research. By far the commonest control strategy of AC machines is the vector control that allows dc machine like decoupled control of machine flux and torque. The separation of flux and torque producing current components depends heavily on the parameters of the machine at hand. In case the parameters fed to the controller do not match the actual machine parameters, the control performance deteriorates both in terms of accuracy and efficiency. For synchronous machines using permanent magnets, the magnetic model of the machine is important both for flux estimation accuracy at low speeds and for deriving maximum torque out of machine per ampere of input stator current. The identification of the magnetic model of permanent magnet synchronous machines requires special tests in a laboratory environment by loading the machine. A number of machine parameter identification methods have been studied in the past and proposed in the literature. As the power amplifier implied is almost always an inverter, the estimation of machine parameters at start-up by generating special test signals through the inverter have been researched in depth and are investigated in this thesis. These techniques are termed as offline parameter identification strategies. Other methods that focus on parameter updating during routine machine operation are called online parameter estimation methods. In this thesis, only the offline identification schemes are studied and explored further. With continuous improvements in power semiconductor devices' switching speeds and more powerful microprocessors being used for the control of electric drives, generating a host of test signals has been made possible. Analysing the machine response to the injected test signals using enhanced computational power onboard is relatively easier. These conditions favour the use of even more complex test strategies and algorithms for self-commissioning and to reduce the time required for conducting these tests. Moreover, the universal design of electric drives renders the self commissioning algorithms easily adaptable for different machine types used in industry. Among a number of AC machines available on the market, the most widely used in industrial drives are considered for study here. These include AC induction and permanent magnet synchronous machines. Induction machines still play a major part in industrial processes due, largely, to their ruggedness and maintenance-freeness; however, the permanent magnet machines are fast replacing them as competitive alternatives because of their low volume-to-power, weight-to-power ratios and higher efficiency. Their relatively light weight makes these machines a preferred choice in traction and propeller applications over their asynchronous counterpart

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering
    corecore