1,307 research outputs found

    Pinning dynamic systems of networks with Markovian switching couplings and controller-node set

    Full text link
    In this paper, we study pinning control problem of coupled dynamical systems with stochastically switching couplings and stochastically selected controller-node set. Here, the coupling matrices and the controller-node sets change with time, induced by a continuous-time Markovian chain. By constructing Lyapunov functions, we establish tractable sufficient conditions for exponentially stability of the coupled system. Two scenarios are considered here. First, we prove that if each subsystem in the switching system, i.e. with the fixed coupling, can be stabilized by the fixed pinning controller-node set, and in addition, the Markovian switching is sufficiently slow, then the time-varying dynamical system is stabilized. Second, in particular, for the problem of spatial pinning control of network with mobile agents, we conclude that if the system with the average coupling and pinning gains can be stabilized and the switching is sufficiently fast, the time-varying system is stabilized. Two numerical examples are provided to demonstrate the validity of these theoretical results, including a switching dynamical system between several stable sub-systems, and a dynamical system with mobile nodes and spatial pinning control towards the nodes when these nodes are being in a pre-designed region.Comment: 9 pages; 3 figure

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    Adaptive Synchronization of Complex Dynamical Networks with State Predictor

    Get PDF
    This paper addresses the adaptive synchronization of complex dynamical networks with nonlinear dynamics. Based on the Lyapunov method, it is shown that the network can synchronize to the synchronous state by introducing local adaptive strategy to the coupling strengths. Moreover, it is also proved that the convergence speed of complex dynamical networks can be increased via designing a state predictor. Finally, some numerical simulations are worked out to illustrate the analytical results

    Distributed Adaptive Control for Networked Multi-Robot Systems

    Get PDF
    corecore