838,840 research outputs found

    Efficiency Improvement of Measurement Pose Selection Techniques in Robot Calibration

    Get PDF
    The paper deals with the design of experiments for manipulator geometric and elastostatic calibration based on the test-pose approach. The main attention is paid to the efficiency improvement of numerical techniques employed in the selection of optimal measurement poses for calibration experiments. The advantages of the developed technique are illustrated by simulation examples that deal with the geometric calibration of the industrial robot of serial architecture

    Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search

    Full text link
    This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and Systems (IROS) 201

    Manipulator-based grasping pose selection by means of task-objective optimisation

    Full text link
    This paper presents an alternative to inverse kinematics for mobile manipulator grasp pose selection which integrates obstacle avoidance and joint limit checking into the pose selection process. Given the Cartesian coordinates of an object in 3D space and its normal vector, end-effector pose objectives including collision checking and joint limit checks are used to create a series of cost functions based on sigmoid functions. These functions are optimised using Levenberg-Marquardt's algorithm to determine a valid pose for a given object. The proposed method has been shown to extend the workspace of the manipulator, eliminating the need for precomputed grasp sets and post pose selection collision checking and joint limit checks. This method has been successfully used on a 6 DOF manipulator both in simulation and in the real world environment

    LDSO: Direct Sparse Odometry with Loop Closure

    Full text link
    In this paper we present an extension of Direct Sparse Odometry (DSO) to a monocular visual SLAM system with loop closure detection and pose-graph optimization (LDSO). As a direct technique, DSO can utilize any image pixel with sufficient intensity gradient, which makes it robust even in featureless areas. LDSO retains this robustness, while at the same time ensuring repeatability of some of these points by favoring corner features in the tracking frontend. This repeatability allows to reliably detect loop closure candidates with a conventional feature-based bag-of-words (BoW) approach. Loop closure candidates are verified geometrically and Sim(3) relative pose constraints are estimated by jointly minimizing 2D and 3D geometric error terms. These constraints are fused with a co-visibility graph of relative poses extracted from DSO's sliding window optimization. Our evaluation on publicly available datasets demonstrates that the modified point selection strategy retains the tracking accuracy and robustness, and the integrated pose-graph optimization significantly reduces the accumulated rotation-, translation- and scale-drift, resulting in an overall performance comparable to state-of-the-art feature-based systems, even without global bundle adjustment
    corecore