838,840 research outputs found
Efficiency Improvement of Measurement Pose Selection Techniques in Robot Calibration
The paper deals with the design of experiments for manipulator geometric and
elastostatic calibration based on the test-pose approach. The main attention is
paid to the efficiency improvement of numerical techniques employed in the
selection of optimal measurement poses for calibration experiments. The
advantages of the developed technique are illustrated by simulation examples
that deal with the geometric calibration of the industrial robot of serial
architecture
Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search
This paper considers the problem of active object recognition using touch
only. The focus is on adaptively selecting a sequence of wrist poses that
achieves accurate recognition by enclosure grasps. It seeks to minimize the
number of touches and maximize recognition confidence. The actions are
formulated as wrist poses relative to each other, making the algorithm
independent of absolute workspace coordinates. The optimal sequence is
approximated by Monte Carlo tree search. We demonstrate results in a physics
engine and on a real robot. In the physics engine, most object instances were
recognized in at most 16 grasps. On a real robot, our method recognized objects
in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and
Systems (IROS) 201
Manipulator-based grasping pose selection by means of task-objective optimisation
This paper presents an alternative to inverse kinematics for mobile manipulator grasp pose selection which integrates obstacle avoidance and joint limit checking into the pose selection process. Given the Cartesian coordinates of an object in 3D space and its normal vector, end-effector pose objectives including collision checking and joint limit checks are used to create a series of cost functions based on sigmoid functions. These functions are optimised using Levenberg-Marquardt's algorithm to determine a valid pose for a given object. The proposed method has been shown to extend the workspace of the manipulator, eliminating the need for precomputed grasp sets and post pose selection collision checking and joint limit checks. This method has been successfully used on a 6 DOF manipulator both in simulation and in the real world environment
LDSO: Direct Sparse Odometry with Loop Closure
In this paper we present an extension of Direct Sparse Odometry (DSO) to a
monocular visual SLAM system with loop closure detection and pose-graph
optimization (LDSO). As a direct technique, DSO can utilize any image pixel
with sufficient intensity gradient, which makes it robust even in featureless
areas. LDSO retains this robustness, while at the same time ensuring
repeatability of some of these points by favoring corner features in the
tracking frontend. This repeatability allows to reliably detect loop closure
candidates with a conventional feature-based bag-of-words (BoW) approach. Loop
closure candidates are verified geometrically and Sim(3) relative pose
constraints are estimated by jointly minimizing 2D and 3D geometric error
terms. These constraints are fused with a co-visibility graph of relative poses
extracted from DSO's sliding window optimization. Our evaluation on publicly
available datasets demonstrates that the modified point selection strategy
retains the tracking accuracy and robustness, and the integrated pose-graph
optimization significantly reduces the accumulated rotation-, translation- and
scale-drift, resulting in an overall performance comparable to state-of-the-art
feature-based systems, even without global bundle adjustment
- …
