470,079 research outputs found
Pose for Action - Action for Pose
In this work we propose to utilize information about human actions to improve
pose estimation in monocular videos. To this end, we present a pictorial
structure model that exploits high-level information about activities to
incorporate higher-order part dependencies by modeling action specific
appearance models and pose priors. However, instead of using an additional
expensive action recognition framework, the action priors are efficiently
estimated by our pose estimation framework. This is achieved by starting with a
uniform action prior and updating the action prior during pose estimation. We
also show that learning the right amount of appearance sharing among action
classes improves the pose estimation. We demonstrate the effectiveness of the
proposed method on two challenging datasets for pose estimation and action
recognition with over 80,000 test images.Comment: Accepted to FG-201
Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation
We propose a novel approach to jointly perform 3D shape retrieval and pose
estimation from monocular images.In order to make the method robust to
real-world image variations, e.g. complex textures and backgrounds, we learn an
embedding space from 3D data that only includes the relevant information,
namely the shape and pose. Our approach explicitly disentangles a shape vector
and a pose vector, which alleviates both pose bias for 3D shape retrieval and
categorical bias for pose estimation. We then train a CNN to map the images to
this embedding space, and then retrieve the closest 3D shape from the database
and estimate the 6D pose of the object. Our method achieves 10.3 median error
for pose estimation and 0.592 top-1-accuracy for category agnostic 3D object
retrieval on the Pascal3D+ dataset, outperforming the previous state-of-the-art
methods on both tasks
Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion
Facial landmark detection, head pose estimation, and facial deformation
analysis are typical facial behavior analysis tasks in computer vision. The
existing methods usually perform each task independently and sequentially,
ignoring their interactions. To tackle this problem, we propose a unified
framework for simultaneous facial landmark detection, head pose estimation, and
facial deformation analysis, and the proposed model is robust to facial
occlusion. Following a cascade procedure augmented with model-based head pose
estimation, we iteratively update the facial landmark locations, facial
occlusion, head pose and facial de- formation until convergence. The
experimental results on benchmark databases demonstrate the effectiveness of
the proposed method for simultaneous facial landmark detection, head pose and
facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition,
201
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
The goal of this paper is to advance the state-of-the-art of articulated pose
estimation in scenes with multiple people. To that end we contribute on three
fronts. We propose (1) improved body part detectors that generate effective
bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms
that allow to assemble the proposals into a variable number of consistent body
part configurations; and (3) an incremental optimization strategy that explores
the search space more efficiently thus leading both to better performance and
significant speed-up factors. Evaluation is done on two single-person and two
multi-person pose estimation benchmarks. The proposed approach significantly
outperforms best known multi-person pose estimation results while demonstrating
competitive performance on the task of single person pose estimation. Models
and code available at http://pose.mpi-inf.mpg.deComment: ECCV'16. High-res version at
https://www.d2.mpi-inf.mpg.de/sites/default/files/insafutdinov16arxiv.pd
- …
