470,079 research outputs found

    Pose for Action - Action for Pose

    Full text link
    In this work we propose to utilize information about human actions to improve pose estimation in monocular videos. To this end, we present a pictorial structure model that exploits high-level information about activities to incorporate higher-order part dependencies by modeling action specific appearance models and pose priors. However, instead of using an additional expensive action recognition framework, the action priors are efficiently estimated by our pose estimation framework. This is achieved by starting with a uniform action prior and updating the action prior during pose estimation. We also show that learning the right amount of appearance sharing among action classes improves the pose estimation. We demonstrate the effectiveness of the proposed method on two challenging datasets for pose estimation and action recognition with over 80,000 test images.Comment: Accepted to FG-201

    Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation

    Full text link
    We propose a novel approach to jointly perform 3D shape retrieval and pose estimation from monocular images.In order to make the method robust to real-world image variations, e.g. complex textures and backgrounds, we learn an embedding space from 3D data that only includes the relevant information, namely the shape and pose. Our approach explicitly disentangles a shape vector and a pose vector, which alleviates both pose bias for 3D shape retrieval and categorical bias for pose estimation. We then train a CNN to map the images to this embedding space, and then retrieve the closest 3D shape from the database and estimate the 6D pose of the object. Our method achieves 10.3 median error for pose estimation and 0.592 top-1-accuracy for category agnostic 3D object retrieval on the Pascal3D+ dataset, outperforming the previous state-of-the-art methods on both tasks

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model

    Full text link
    The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation. Models and code available at http://pose.mpi-inf.mpg.deComment: ECCV'16. High-res version at https://www.d2.mpi-inf.mpg.de/sites/default/files/insafutdinov16arxiv.pd
    corecore