578 research outputs found

    Illumination Processing in Face Recognition

    Get PDF

    3D facial shape estimation from a single image under arbitrary pose and illumination.

    Get PDF
    Humans have the uncanny ability to perceive the world in three dimensions (3D), otherwise known as depth perception. The amazing thing about this ability to determine distances is that it depends only on a simple two-dimensional (2D) image in the retina. It is an interesting problem to explain and mimic this phenomenon of getting a three-dimensional perception of a scene from a flat 2D image of the retina. The main objective of this dissertation is the computational aspect of this human ability to reconstruct the world in 3D using only 2D images from the retina. Specifically, the goal of this work is to recover 3D facial shape information from a single image of unknown pose and illumination. Prior shape and texture models from real data, which are metric in nature, are incorporated into the 3D shape recovery framework. The output recovered shape, likewise, is metric, unlike previous shape-from-shading (SFS) approaches that only provide relative shape. This work starts first with the simpler case of general illumination and fixed frontal pose. Three optimization approaches were developed to solve this 3D shape recovery problem, starting from a brute-force iterative approach to a computationally efficient regression method (Method II-PCR), where the classical shape-from-shading equation is cast as a regression framework. Results show that the output of the regression-like approach is faster in timing and similar in error metrics when compared to its iterative counterpart. The best of the three algorithms above, Method II-PCR, is compared to its two predecessors, namely: (a) Castelan et al. [1] and (b) Ahmed et al. [2]. Experimental results show that the proposed method (Method II-PCR) is superior in all aspects compared to the previous state-of-the-art. Robust statistics was also incorporated into the shape recovery framework to deal with noise and occlusion. Using multiple-view geometry concepts [3], the fixed frontal pose was relaxed to arbitrary pose. The best of the three algorithms above, Method II-PCR, once again is used as the primary 3D shape recovery method. Results show that the pose-invariant 3D shape recovery version (for input with pose) has similar error values compared to the frontal-pose version (for input with frontal pose), for input images of the same subject. Sensitivity experiments indicate that the proposed method is, indeed, invariant to pose, at least for the pan angle range of (-50° to 50°). The next major part of this work is the development of 3D facial shape recovery methods, given only the input 2D shape information, instead of both texture and 2D shape. The simpler case of output 3D sparse shapes was dealt with, initially. The proposed method, which also use a regression-based optimization approach, was compared with state-of-the art algorithms, showing decent performance. There were five conclusions that drawn from the sparse experiments, namely, the proposed approach: (a) is competitive due to its linear and non-iterative nature, (b) does not need explicit training, as opposed to [4], (c) has comparable results to [4], at a shorter computational time, (d) better in all aspects than Zhang and Samaras [5], and (e) has the limitation, together with [4] and [5], in terms of the need to manually annotate the input 2D feature points. The proposed method was then extended to output 3D dense shapes simply by replacing the sparse model with its dense equivalent, in the regression framework inside the 3D face recovery approach. The numerical values of the mean height and surface orientation error indicate that even if shading information is unavailable, a decent 3D dense reconstruction is still possible

    Phenomenological modeling of image irradiance for non-Lambertian surfaces under natural illumination.

    Get PDF
    Various vision tasks are usually confronted by appearance variations due to changes of illumination. For instance, in a recognition system, it has been shown that the variability in human face appearance is owed to changes to lighting conditions rather than person\u27s identity. Theoretically, due to the arbitrariness of the lighting function, the space of all possible images of a fixed-pose object under all possible illumination conditions is infinite dimensional. Nonetheless, it has been proven that the set of images of a convex Lambertian surface under distant illumination lies near a low dimensional linear subspace. This result was also extended to include non-Lambertian objects with non-convex geometry. As such, vision applications, concerned with the recovery of illumination, reflectance or surface geometry from images, would benefit from a low-dimensional generative model which captures appearance variations w.r.t. illumination conditions and surface reflectance properties. This enables the formulation of such inverse problems as parameter estimation. Typically, subspace construction boils to performing a dimensionality reduction scheme, e.g. Principal Component Analysis (PCA), on a large set of (real/synthesized) images of object(s) of interest with fixed pose but different illumination conditions. However, this approach has two major problems. First, the acquired/rendered image ensemble should be statistically significant vis-a-vis capturing the full behavior of the sources of variations that is of interest, in particular illumination and reflectance. Second, the curse of dimensionality hinders numerical methods such as Singular Value Decomposition (SVD) which becomes intractable especially with large number of large-sized realizations in the image ensemble. One way to bypass the need of large image ensemble is to construct appearance subspaces using phenomenological models which capture appearance variations through mathematical abstraction of the reflection process. In particular, the harmonic expansion of the image irradiance equation can be used to derive an analytic subspace to represent images under fixed pose but different illumination conditions where the image irradiance equation has been formulated in a convolution framework. Due to their low-frequency nature, irradiance signals can be represented using low-order basis functions, where Spherical Harmonics (SH) has been extensively adopted. Typically, an ideal solution to the image irradiance (appearance) modeling problem should be able to incorporate complex illumination, cast shadows as well as realistic surface reflectance properties, while moving away from the simplifying assumptions of Lambertian reflectance and single-source distant illumination. By handling arbitrary complex illumination and non-Lambertian reflectance, the appearance model proposed in this dissertation moves the state of the art closer to the ideal solution. This work primarily addresses the geometrical compliance of the hemispherical basis for representing surface reflectance while presenting a compact, yet accurate representation for arbitrary materials. To maintain the plausibility of the resulting appearance, the proposed basis is constructed in a manner that satisfies the Helmholtz reciprocity property while avoiding high computational complexity. It is believed that having the illumination and surface reflectance represented in the spherical and hemispherical domains respectively, while complying with the physical properties of the surface reflectance would provide better approximation accuracy of image irradiance when compared to the representation in the spherical domain. Discounting subsurface scattering and surface emittance, this work proposes a surface reflectance basis, based on hemispherical harmonics (HSH), defined on the Cartesian product of the incoming and outgoing local hemispheres (i.e. w.r.t. surface points). This basis obeys physical properties of surface reflectance involving reciprocity and energy conservation. The basis functions are validated using analytical reflectance models as well as scattered reflectance measurements which might violate the Helmholtz reciprocity property (this can be filtered out through the process of projecting them on the subspace spanned by the proposed basis, where the reciprocity property is preserved in the least-squares sense). The image formation process of isotropic surfaces under arbitrary distant illumination is also formulated in the frequency space where the orthogonality relation between illumination and reflectance bases is encoded in what is termed as irradiance harmonics. Such harmonics decouple the effect of illumination and reflectance from the underlying pose and geometry. Further, a bilinear approach to analytically construct irradiance subspace is proposed in order to tackle the inherent problem of small-sample-size and curse of dimensionality. The process of finding the analytic subspace is posed as establishing a relation between its principal components and that of the irradiance harmonics basis functions. It is also shown how to incorporate prior information about natural illumination and real-world surface reflectance characteristics in order to capture the full behavior of complex illumination and non-Lambertian reflectance. The use of the presented theoretical framework to develop practical algorithms for shape recovery is further presented where the hitherto assumed Lambertian assumption is relaxed. With a single image of unknown general illumination, the underlying geometrical structure can be recovered while accounting explicitly for object reflectance characteristics (e.g. human skin types for facial images and teeth reflectance for human jaw reconstruction) as well as complex illumination conditions. Experiments on synthetic and real images illustrate the robustness of the proposed appearance model vis-a-vis illumination variation. Keywords: computer vision, computer graphics, shading, illumination modeling, reflectance representation, image irradiance, frequency space representations, {hemi)spherical harmonics, analytic bilinear PCA, model-based bilinear PCA, 3D shape reconstruction, statistical shape from shading

    Illumination tolerance in facial recognition

    Get PDF
    In this research work, five different preprocessing techniques were experimented with two different classifiers to find the best match for preprocessor + classifier combination to built an illumination tolerant face recognition system. Hence, a face recognition system is proposed based on illumination normalization techniques and linear subspace model using two distance metrics on three challenging, yet interesting databases. The databases are CAS PEAL database, the Extended Yale B database, and the AT&T database. The research takes the form of experimentation and analysis in which five illumination normalization techniques were compared and analyzed using two different distance metrics. The performances and execution times of the various techniques were recorded and measured for accuracy and efficiency. The illumination normalization techniques were Gamma Intensity Correction (GIC), discrete Cosine Transform (DCT), Histogram Remapping using Normal distribution (HRN), Histogram Remapping using Log-normal distribution (HRL), and Anisotropic Smoothing technique (AS). The linear subspace models utilized were principal component analysis (PCA) and Linear Discriminant Analysis (LDA). The two distance metrics were Euclidean and Cosine distance. The result showed that for databases with both illumination (shadows), and lighting (over-exposure) variations like the CAS PEAL database the Histogram remapping technique with normal distribution produced excellent result when the cosine distance is used as the classifier. The result indicated 65% recognition rate in 15.8 ms/img. Alternatively for databases consisting of pure illumination variation, like the extended Yale B database, the Gamma Intensity Correction (GIC) merged with the Euclidean distance metric gave the most accurate result with 95.4% recognition accuracy in 1ms/img. It was further gathered from the set of experiments that the cosine distance produces more accurate result compared to the Euclidean distance metric. However the Euclidean distance is faster than the cosine distance in all the experiments conducted

    Inverse Rendering of Faces with a 3D Morphable Model

    Get PDF
    In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database
    corecore