527,950 research outputs found
Steric effects in adsorption of ions from mixed electrolytes into microporous carbon
With the goal to improve the capacitance in electrochemical double-layer capacitors (EDLCs) many studies on pore size/ion size relationship have been undertaken to achieve a better understanding of the charge storage mechanism in the electrochemical double-layer in confinement. A significant capacitance increase was achieved by using carbon electrodes with micropores (b1 nm), when the carbon pore size was close to the ion size. In this paper, the accessibility of narrow pores is investigated by selecting a carbon with a small pore size (b0.7 nm) and electrolyte mixtures with different ion sizes. It has been shown that the adsorption capacitance limitation observed for large cations and anions could be overcome by adding ions with a smaller effective size. This result demonstrates that the pores are accessible when their size matches the effective ion size and contradicts the surface saturation assumption; effective ion size which exceeds the pore size leads to
current limitation. This work confirms that the steric effect is involved when ions are adsorbed into pores and
highlights the importance of controlling ion size/pore size relationship for optimisation of the capacitive
performance of EDLC devices
Multi-scale simulation of capillary pores and gel pores in Portland cement paste
The microstructures of Portland cement paste (water to cement ratio is 0.4, curing time is from 1 day to 28 days)
are simulated based on the numerical cement hydration model, HUMOSTRUC3D (van Breugel, 1991;
Koenders, 1997; Ye, 2003). The nanostructures of inner and outer C-S-H are simulated by the packing of monosized
(5 nm) spheres. The pore structures (capillary pores and gel pores) of Portland cement paste are
established by upgrading the simulated nanostructures of C-S-H to the simulated microstructures of Portland
cement paste. The pore size distribution of Portland cement paste is simulated by using the image segmentation
method (Shapiro and Stockman, 2001) to analyse the simulated pore structures of Portland cement paste.
The simulation results indicate that the pore size distribution of the simulated capillary pores of Portland
cement paste at the age of 1 day to 28 days is in a good agreement with the pore size distribution determined by
scanning electron microscopy (SEM). The pore size distribution of the simulated gel pores of Portland cement
paste (interlayer gel pores of outer C-S-H and gel pores of inner C-S-H are not included) is validated by the
pore size distribution obtained by mercury intrusion porosimetry (MIP). The pores with pore size of 20 nm to
100 nm occupy very small volume fraction in the simulated Portland cement paste at each curing time (0.69% to
1.38%). This is consistent with the experimental results obtained by nuclear magnetic resonance (NMR)
Quantitative characterization of pore structure of several biochars with 3D imaging
Pore space characteristics of biochars may vary depending on the used raw
material and processing technology. Pore structure has significant effects on
the water retention properties of biochar amended soils. In this work, several
biochars were characterized with three-dimensional imaging and image analysis.
X-ray computed microtomography was used to image biochars at resolution of 1.14
m and the obtained images were analysed for porosity, pore-size
distribution, specific surface area and structural anisotropy. In addition,
random walk simulations were used to relate structural anisotropy to diffusive
transport. Image analysis showed that considerable part of the biochar volume
consist of pores in size range relevant to hydrological processes and storage
of plant available water. Porosity and pore-size distribution were found to
depend on the biochar type and the structural anisotopy analysis showed that
used raw material considerably affects the pore characteristics at micrometre
scale. Therefore attention should be paid to raw material selection and quality
in applications requiring optimized pore structure.Comment: 16 pages, 4 figures. The final publication is available at Springer
via http://dx.doi.org/10.1007/s11356-017-8823-
A new method for the determination of thin film porosity
Internal reflection spectroscopy may be used to determine presence of water in thin film pores. Presence of water in such pores is function of relative humidity and pore size. Thus, one can determine pore size by controlling humidity. Fluids with surface tension different from that of water can be used to detect pores
Computer program calculates and plots surface area and pore size distribution data
Computer program calculates surface area and pore size distribution of powders, metals, ceramics, and catalysts, and prints and plots the desired data directly. Surface area calculations are based on the gas adsorption technique of Brunauer, Emmett, and Teller, and pore size distribution calculations are based on the gas adsorption technique of Pierce
Polymer Translocation Through a Long Nanopore
Polymer translocation through a nanopore in a membrane investigated
theoretically. Recent experiments on voltage-driven DNA and RNA translocations
through a nanopore indicate that the size and geometry of the pore are
important factors in polymer dynamics. A theoretical approach is presented
which explicitly takes into account the effect of the nanopore length and
diameter for polymer motion across the membrane. It is shown that the length of
the pore is crucial for polymer translocation dynamics. The present model
predicts that for realistic conditions (long nanopores and large external
fields) there are two regimes of translocation depending on polymer size: for
polymer chains larger than the pore length, the velocity of translocation is
nearly constant, while for polymer chains smaller than the pore length the
velocity increases with decreasing polymer size. These results agree with
experimental data.Comment: 14 pages, 5 figure
- …
